Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010 (2010), Article ID 729876, 8 pages
http://dx.doi.org/10.1155/2010/729876
Research Article

Combination PPAR and RXR Agonist Treatment in Melanoma Cells: Functional Importance of S100A2

1Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
2University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO 80045, USA
3Department of Molecular Oncology, Ligand Pharmaceuticals, San Diego, CA 92121, USA

Received 11 May 2009; Accepted 28 July 2009

Academic Editor: Dipak Panigrahy

Copyright © 2010 Joshua P. Klopper et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Garbe and T. K. Eigentler, “Diagnosis and treatment of cutaneous melanoma: state of the art 2006,” Melanoma Research, vol. 17, no. 2, pp. 117–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. D. Shah and P. B. Chapman, “Adjuvant therapy of melanoma,” Cancer Journal, vol. 13, no. 3, pp. 217–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Lorigan, T. Eisen, and A. Hauschild, “Systemic therapy for metastatic malignant melanoma—from deeply disappointing to bright future?” Experimental Dermatology, vol. 17, no. 5, pp. 383–394, 2008. View at Publisher · View at Google Scholar
  4. A. Y. Bedikian, M. M. Johnson, C. L. Warneke et al., “Prognostic factors that determine the long-term survival of patients with unresectable metastatic melanoma,” Cancer Investigation, vol. 26, no. 6, pp. 624–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Klopper, W. R. Hays, V. Sharma, M. A. Baumbusch, J. M. Hershman, and B. R. Haugen, “Retinoid X receptor-γ and peroxisome proliferator-activated receptor-γ expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment,” Molecular Cancer Therapeutics, vol. 3, no. 8, pp. 1011–1120, 2004. View at Google Scholar · View at Scopus
  6. J. P. Klopper, A. Berenz, W. R. Hays et al., “In vivo and microarray analysis of rexinoid-responsive anaplastic thyroid carcinoma,” Clinical Cancer Research, vol. 14, no. 2, pp. 589–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Schweppe, J. P. Klopper, C. Korch et al., “Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4331–4341, 2008. View at Publisher · View at Google Scholar
  8. J. P. Klopper, V. Sharma, A. Berenz et al., “Retinoid and thiazolidinedione therapies in melanoma: an analysis of differential response based on nuclear hormone receptor expression,” Molecular Cancer, vol. 8, article 16, 2009. View at Publisher · View at Google Scholar
  9. D. Nonaka, L. Chiriboga, and B. P. Rubin, “Differential expression of S100 protein subtypes in malignant melanoma, and benign and malignant peripheral nerve sheath tumors,” Journal of Cutaneous Pathology, vol. 35, no. 11, pp. 1014–1019, 2008. View at Publisher · View at Google Scholar
  10. S. Foser, I. Redwanz, M. Ebeling, C. W. Heizmann, and U. Certa, “Interferon-alpha and transforming growth factor-β co-induce growth inhibition of human tumor cells,” Cellular and Molecular Life Sciences, vol. 63, no. 19-20, pp. 2387–2396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. R. Haugen, L. L. Larson, U. Pugazhenthi et al., “Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 1, pp. 272–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Muelleri, B. W. Schäfer, S. Ferrari et al., “The Calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity,” Journal of Biological Chemistry, vol. 280, no. 32, pp. 29186–29193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Salama, P. S. Malone, F. Mihaimeed, and J. L. Jones, “A review of the S100 proteins in cancer,” European Journal of Surgical Oncology, vol. 34, no. 4, pp. 357–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Grigorian, S. Andresen, E. Tulchinsky et al., “Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22699–22708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Wang, Z. Zhang, R. Li et al., “Overexpression of S100A2 protein as a prognostic marker for patients with stage I non small cell lung cancer,” International Journal of Cancer, vol. 116, no. 2, pp. 285–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Bartling, G. Rehbein, W. D. Schmitt, H.-S. Hofmann, R.-E. Silber, and A. Simm, “S100A2-S100P expression profile and diagnosis of non-small cell lung carcinoma: Impairment by advanced tumour stages and neoadjuvant chemotherapy,” European Journal of Cancer, vol. 43, no. 13, pp. 1935–1943, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. I. Riker, S. A. Enkemann, O. Fodstad, S. Liu, S. Ren, and C. Morris, “The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis,” BMC Medical Genomics, vol. 1, article 13, 2008. View at Google Scholar
  18. F. Egberts, A. Pollex, J.-H. Egberts, K. C. Kaehler, M. Weichenthal, and A. Hauschild, “Long-term survival analysis in metastatic melanoma: serum S100B is an independent prognostic marker and superior to LDH,” Onkologie, vol. 31, no. 7, pp. 380–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. M. Maelandsmo, V. A. Flørenes, T. Mellingsaetr, E. Hovig, R. S. Kerbel, and Ø. Fodstad, “Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma,” International Journal of Cancer, vol. 74, no. 4, pp. 464–469, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Gollob and C. J. Sciambi, “Decitabine up-regulates S100A2 expression and synergizes with IFN-gamma to kill uveal melanoma cells,” Clinical Cancer Research, vol. 13, pp. 5219–5225, 2007. View at Google Scholar
  21. R.-Y. Shyu, S.-L. Huang, and S.-Y. Jiang, “Retinoic acid increases expression of the calcium-binding protein S100P in human gastric cancer cells,” Journal of Biomedical Science, vol. 10, no. 3, pp. 313–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Tsutsui, T. Nogami, M. Sano, A. Kashiwai, and K. Kato, “Induction of S-100b (ββ) protein in human teratocarcinoma cells,” Cell Differentiation, vol. 21, no. 2, pp. 137–145, 1987. View at Google Scholar · View at Scopus
  23. H.-T. Kim, G. Kong, D. DeNardo et al., “Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays,” Cancer Research, vol. 66, no. 24, pp. 12009–12018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Richards, J. Karpilow, C. Dunn et al., “Genetic selection for modulators of a retinoic-acid-responsive reporter in human cells,” Genetics, vol. 163, no. 3, pp. 1047–1060, 2003. View at Google Scholar · View at Scopus