Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012 (2012), Article ID 471524, 5 pages
http://dx.doi.org/10.1155/2012/471524
Research Article

Altered Peroxisome-Proliferator Activated Receptors Expression in Human Endometrial Cancer

1Department of Gynecology, Medical University of Bialystok, 15-222 Bialystok, Poland
2Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
3Department of Gynecological Endocrinology, Medical University of Bialystok, 15-276 Bialystok, Poland

Received 11 July 2011; Revised 7 November 2011; Accepted 21 November 2011

Academic Editor: Ruth Roberts

Copyright © 2012 Paweł Knapp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Nahlé, “PPAR trilogy from metabolism to cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 4, pp. 397–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Barak and C.-H. Lee, “The molecular basis of ppar function,” PPAR Research, vol. 2010, Article ID 510530, 2 pages, 2010. View at Publisher · View at Google Scholar
  3. A. Bugge and S. Mandrup, “Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation,” PPAR Research, vol. 2010, Article ID 169506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Madrazo and D. P. Kelly, “The PPAR trio: regulators of myocardial energy metabolism in health and disease,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 6, pp. 968–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Bility, M. K. Devlin-Durante, N. Blazanin et al., “Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) inhibits chemically induced skin tumorigenesis,” Carcinogenesis, vol. 29, no. 12, pp. 2406–2414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Nigro, S. Potter-Perigo, M. E. Ivey et al., “The effect of PPAR ligands to modulate glucose metabolism alters the incorporation of metabolic precursors into proteoglycans synthesized by human vascular smooth muscle cells,” Archives of Physiology and Biochemistry, vol. 114, no. 3, pp. 171–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Mogilenko, E. B. Dizhe, V. S. Shavva, I. A. Lapikov, S. V. Orlov, and A. P. Perevozchikov, “Role of the nuclear receptors HNF4α, PPARα, and LXRs in the TNFα-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells,” Biochemistry, vol. 48, no. 50, pp. 11950–11960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yasui, M. Kim, and T. Tanaka, “PPAR ligands for cancer chemoprevention,” PPAR Research, vol. 2008, Article ID 548919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Simula, R. Cannizzaro, V. Canzonieri et al., “PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage,” Molecular Medicine, vol. 16, no. 5-6, pp. 199–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. V. Bokhman, “Two pathogenetic types of endometrial carcinoma,” Gynecologic Oncology, vol. 15, no. 1, pp. 10–17, 1983. View at Google Scholar · View at Scopus
  11. T. Lesniewicz, L. Kanczuga-Koda, M. Baltaziak et al., “Comparative evaluation of estrogen and progesterone receptor expression with connexins 26 and 43 in endometrial cancer,” International Journal of Gynecological Cancer, vol. 19, no. 7, pp. 1253–1257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Analytical Biochemistry, vol. 162, no. 1, pp. 156–159, 1987. View at Google Scholar · View at Scopus
  13. C. Crisafulli and S. Cuzzocrea, “The role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-α) in the regulation of inflammation in macrophages,” Shock, vol. 32, no. 1, pp. 62–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ota, K. Ito, T. Suzuki et al., “Peroxisome proliferator-activated receptor gamma and growth inhibition by its ligands in uterine endometrial carcinoma,” Clinical Cancer Research, vol. 12, no. 14, pp. 4200–4208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Surazynski, K. Jarzabek, W. Miltyk, S. Wolczynski, and J. Palka, “Estrogen-dependent regulation of PPAR-γ signaling on collagen biosynthesis in adenocarcinoma endometrial cells,” Neoplasma, vol. 56, no. 5, pp. 448–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. K. Rumi, S. Ishihara, H. Kazumori, Y. Kadowaki, and Y. Kinoshita, “Can PRARγ ligands be used in cancer therapy?” Current Medicinal Chemistry, vol. 4, no. 6, pp. 465–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. L. H. Peeters, J. L. Vigne, K. T. Meng, D. Zhao, L. L. Waite, and R. N. Taylor, “PPARγ represses VEGF expression in human endometrial cells: implications for uterine angiogenesis,” Angiogenesis, vol. 8, no. 4, pp. 373–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. A. Pritts, D. Zhao, E. Ricke, L. Waite, and R. N. Taylor, “PPAR-γ decreases endometrial stromal cell transcription and translation of RANTES in Vitro,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1841–1844, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Cui, K. Miyoshi, E. Claudio et al., “Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility,” Journal of Biological Chemistry, vol. 277, no. 20, pp. 17830–17835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Reka, M. T. Goswami, R. Krishnapuram, T. J. Standiford, and V. G. Keshamouni, “Molecular cross-regulation between PPAR-γ and other signaling pathways: implications for lung cancer therapy,” Lung Cancer, vol. 72, no. 2, pp. 154–159, 2011. View at Publisher · View at Google Scholar
  21. S.-L. Yeh, C.-L. Yeh, S.-T. Chan, and C.-H. Chuang, “Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR- expression in human A549 lung cancer cells,” Planta Medica, vol. 77, no. 10, pp. 992–998, 2011. View at Publisher · View at Google Scholar
  22. J. Auwerx, “Nuclear receptors I. PPARγ in the gastrointestinal tract: gain or pain?” American Journal of Physiology, vol. 282, pp. G581–G585, 2002. View at Google Scholar
  23. J. E. Foreman, J. M. Sorg, K. S. McGinnis et al., “Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs,” Molecular Carcinogenesis, vol. 48, no. 10, pp. 942–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. E. Girroir, H. E. Hollingshead, P. He, B. Zhu, G. H. Perdew, and J. M. Peters, “Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice,” Biochemical and Biophysical Research Communications, vol. 371, no. 3, pp. 456–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Takayama, H. Yamamoto, B. Damdinsuren et al., “Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology,” British Journal of Cancer, vol. 95, no. 7, pp. 889–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Peters, R. C. Cattley, and F. J. Gonzalez, “Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643,” Carcinogenesis, vol. 18, no. 11, pp. 2029–2033, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Fiévet, J.-C. Fruchart, and B. Staels, “PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 606–614, 2006. View at Publisher · View at Google Scholar
  28. F. J. Gonzalez, J. M. Peters, and R. C. Cattley, “Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activated receptor,” Journal of the National Cancer Institute, vol. 90, no. 22, pp. 1702–1709, 1998. View at Google Scholar · View at Scopus