Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 640769, 6 pages
http://dx.doi.org/10.1155/2012/640769
Review Article

Peroxisome Proliferator-Activator Receptor : A Link between Macrophage CD36 and Inflammation in Malaria Infection

W. M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Nelson Labs D-251, 604 Allison Road, Piscataway, NJ 08854, USA

Received 27 September 2011; Accepted 19 October 2011

Academic Editor: Dunne Fong

Copyright © 2012 Yi Ren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gordon, “Pattern recognition receptors: doubling up for the innate immune response,” Cell, vol. 111, no. 7, pp. 927–930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Serghides, T. G. Smith, S. N. Patel, and K. C. Kain, “CD36 and malaria: friends or foes?” Trends in Parasitology, vol. 19, no. 10, pp. 461–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. I. D. McGilvray, L. Serghides, A. Kapus, O. D. Rotstein, and K. C. Kain, “Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance,” Blood, vol. 96, no. 9, pp. 3231–3240, 2000. View at Google Scholar · View at Scopus
  4. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. T. Huang, J. S. Welch, M. Ricote et al., “Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase,” Nature, vol. 400, no. 6742, pp. 378–382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R. M. Evans, “PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL,” Cell, vol. 93, no. 2, pp. 241–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Takano and I. Komuro, “Peroxisome proliferator-activated receptor γ and cardiovascular diseases,” Circulation Journal, vol. 73, no. 2, pp. 214–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Serghides, S. N. Patel, K. Ayi et al., “Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria,” Journal of Infectious Diseases, vol. 199, no. 10, pp. 1536–1545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Boggild, S. Krudsood, S. N. Patel et al., “Use of peroxisome proliferator-activated receptor γ agonists as adjunctive treatment for Plasmodium falciparum malaria: a randomized, double-blind, placebo-controlled trial,” Clinical Infectious Diseases, vol. 49, no. 6, pp. 841–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Balachandar and A. Katyal, “Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy,” European Journal of Clinical Microbiology & Infectious Diseases, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. W. Brattig, K. Kowalsky, X. Liu, G. D. Burchard, F. Kamena, and P. H. Seeberger, “Plasmodium falciparum glycosylphosphatidylinositol toxin interacts with the membrane of non-parasitized red blood cells: a putative mechanism contributing to malaria anemia,” Microbes and Infection, vol. 10, no. 8, pp. 885–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Silverstein and M. Febbraio, “CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior,” Science Signaling, vol. 2, no. 72, p. re3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Ren, R. L. Silverstein, J. Allen, and J. Savill, “CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis,” Journal of Experimental Medicine, vol. 181, no. 5, pp. 1857–1862, 1995. View at Google Scholar · View at Scopus
  14. Y. Ren and J. Savill, “Apoptosis: the importance of being eaten,” Cell Death and Differentiation, vol. 5, no. 7, pp. 563–568, 1998. View at Google Scholar · View at Scopus
  15. J. Savill and V. Fadok, “Corpse clearance defines the meaning of cell death,” Nature, vol. 407, no. 6805, pp. 784–788, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Savill, N. Hogg, Y. Ren, and C. Haslett, “Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis,” Journal of Clinical Investigation, vol. 90, no. 4, pp. 1513–1522, 1992. View at Google Scholar · View at Scopus
  17. A. S. Asch, J. Barnwell, R. L. Silverstein, and R. L. Nachman, “Isolation of the thrombospondin membrane receptor,” Journal of Clinical Investigation, vol. 79, no. 4, pp. 1054–1061, 1987. View at Google Scholar · View at Scopus
  18. R. L. Silverstein, M. Baird, Sui Kong Lo, and L. M. Yesner, “Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor,” Journal of Biological Chemistry, vol. 267, no. 23, pp. 16607–16612, 1992. View at Google Scholar · View at Scopus
  19. I. N. Baranova, R. Kurlander, A. V. Bocharov et al., “Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling,” Journal of Immunology, vol. 181, no. 10, pp. 7147–7156, 2008. View at Google Scholar · View at Scopus
  20. J. Koenigsknecht and G. Landreth, “Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism,” Journal of Neuroscience, vol. 24, no. 44, pp. 9838–9846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Endemann, L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White, and A. A. Protter, “CD36 is a receptor for oxidized low density lipoprotein,” Journal of Biological Chemistry, vol. 268, no. 16, pp. 11811–11816, 1993. View at Google Scholar · View at Scopus
  22. K. J. Moore and M. W. Freeman, “Scavenger receptors in atherosclerosis: beyond lipid uptake,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1702–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. M. Ndungu, B. C. Urban, K. Marsh, and J. Langhorne, “Regulation of immune response by Plasmodium-infected red blood cells,” Parasite Immunology, vol. 27, no. 10-11, pp. 373–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. B. C. Urban and D. J. Roberts, “Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells,” Current Opinion in Immunology, vol. 14, no. 4, pp. 458–465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. F. Ockenhouse, N. N. Tandon, C. Magowan, G. A. Jamieson, and J. D. Chulay, “Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor,” Science, vol. 243, no. 4897, pp. 1469–1471, 1989. View at Google Scholar · View at Scopus
  26. P. Oquendo, E. Hundt, J. Lawler, and B. Seed, “CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes,” Cell, vol. 58, no. 1, pp. 95–101, 1989. View at Google Scholar · View at Scopus
  27. L. K. Erdman, G. Cosio, A. J. Helmers, D. C. Gowda, S. Grinstein, and K. C. Kain, “CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria,” Journal of Immunology, vol. 183, no. 10, pp. 6452–6459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Serghides and K. C. Kain, “Peroxisome proliferator-activated receptor γ-retinoid X receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparum-parasitized erythrocytes and decrease malaria-induced TNF-α secretion by monocytes/macrophages,” Journal of Immunology, vol. 166, no. 11, pp. 6742–6748, 2001. View at Google Scholar · View at Scopus
  29. T. J. Aitman, L. D. Cooper, P. J. Norsworthy et al., “Malaria susceptibility and CD36 mutation,” Nature, vol. 405, no. 6790, pp. 1015–1016, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. S. N. Patel, Z. Lu, K. Ayi, L. Serghides, D. C. Gowda, and K. C. Kain, “Disruption of CD36 impairs cytokine response to Plasmodium falciparum glycosylphosphatidylinositol and confers susceptibility to severe and fatal malaria in vivo,” Journal of Immunology, vol. 178, no. 6, pp. 3954–3961, 2007. View at Google Scholar · View at Scopus
  31. D. M. Underbill and B. Gantner, “Integration of Toll-like receptor and phagocytic signaling for tailored immunity,” Microbes and Infection, vol. 6, no. 15, pp. 1368–1373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998. View at Google Scholar · View at Scopus
  33. R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, J. R. Kalden, and I. Girkontaite, “Immunosuppressive effects of apoptotic cells,” Nature, vol. 390, no. 6658, pp. 350–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. C. D. Gregory and A. Devitt, “The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?” Immunology, vol. 113, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. Moore, J. El Khoury, L. A. Medeiros et al., “A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47373–47379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Maxeiner, J. Husemann, C. A. Thomas, J. D. Loike, J. El Khoury, and S. C. Silverstein, “Complementary roles for scavenger receptor A and CD36 of human monocyte-derived macrophages in adhesion to surfaces coated with oxidized low-density lipoproteins and in secretion of H2O2,” Journal of Experimental Medicine, vol. 188, no. 12, pp. 2257–2265, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Janabi, S. Yamashita, K. I. Hirano et al., “Oxidized LDL-induced NF-κB activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 8, pp. 1953–1960, 2000. View at Google Scholar · View at Scopus
  38. L. M. Stuart, J. Deng, J. M. Silver et al., “Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain,” Journal of Cell Biology, vol. 170, no. 3, pp. 477–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Hoebe, P. Georgel, S. Rutschmann et al., “CD36 is a sensor of diacylglycerides,” Nature, vol. 433, no. 7025, pp. 523–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Triantafilou, F. G. J. Gamper, R. M. Haston et al., “Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 31002–31011, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. L. Silverstein, W. Li, Y. M. Park, and S. O. Rahaman, “Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis,” Transactions of the American Clinical and Climatological Association, vol. 121, pp. 206–220, 2010. View at Google Scholar
  42. C. R. Stewart, L. M. Stuart, K. Wilkinson et al., “CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11, no. 2, pp. 155–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Abe, M. Shimamura, K. Jackman et al., “Key role of CD36 in toll-like receptor 2 signaling in cerebral ischemia,” Stroke, vol. 41, no. 5, pp. 898–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Coban, K. J. Ishii, T. Horii, and S. Akira, “Manipulation of host innate immune responses by the malaria parasite,” Trends in Microbiology, vol. 15, no. 6, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. D. C. Gowda, “TLR-mediated cell signaling by malaria GPIs,” Trends in Parasitology, vol. 23, no. 12, pp. 596–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Sharma, R. DeOliveira, P. Kalantari et al., “Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome,” Immunity, vol. 35, no. 2, pp. 194–207, 2011. View at Publisher · View at Google Scholar
  47. T. Nebl, M. J. De Veer, and L. Schofield, “Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors,” Parasitology, vol. 130, no. 1, pp. S45–S62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Zhu, G. Krishnegowda, and D. C. Gowda, “Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-κB pathways for the expression of proinflammatory cytokines and nitric oxide,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 8617–8627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Parroche, F. N. Lauw, N. Goutagny et al., “Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1919–1924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Coban, K. J. Ishii, T. Kawai et al., “Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 19–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. T. Shio, F. A. Kassa, M. J. Bellemare, and M. Olivier, “Innate inflammatory response to the malarial pigment hemozoin,” Microbes and Infection, vol. 12, no. 12-13, pp. 889–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Erdman and K. Kain, “Taking the STING out of malaria,” Immunity, vol. 35, no. 2, pp. 149–151, 2011. View at Publisher · View at Google Scholar
  53. S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathison, “CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein,” Science, vol. 249, no. 4975, pp. 1431–1433, 1990. View at Google Scholar · View at Scopus
  54. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at Google Scholar · View at Scopus
  55. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Google Scholar · View at Scopus
  56. J. U. Scher and M. H. Pillinger, “15d-PGJ2: the anti-inflammatory prostaglandin?” Clinical Immunology, vol. 114, no. 2, pp. 100–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Shimizu, “Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation,” Annual Review of Pharmacology and Toxicology, vol. 49, pp. 123–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. M. Chan, K. W. Evans, A. R. Moore, and D. Fong, “Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 828951, 9 pages, 2010. View at Google Scholar · View at Scopus
  60. M. G. Belvisi, D. J. Hele, and M. A. Birrell, “Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation,” European Journal of Pharmacology, vol. 533, no. 1-3, pp. 101–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. M. Stevenson and E. M. Riley, “Innate immunity to malaria,” Nature Reviews Immunology, vol. 4, no. 3, pp. 169–180, 2004. View at Google Scholar · View at Scopus
  62. R. L. Silverstein, “Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36,” Cleveland Clinic Journal of Medicine, vol. 76, pp. S27–S30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. C. Nicholson and D. P. Hajjar, “CD36, oxidized LDL and PPARγ: pathological interactions in macrophages and atherosclerosis,” Vascular Pharmacology, vol. 41, no. 4-5, pp. 139–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Berry, P. Balard, A. Coste et al., “IL-13 induces expression of CD36 in human monocytes through PPARγ activation,” European Journal of Immunology, vol. 37, no. 6, pp. 1642–1652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. K. J. Moore, E. D. Rosen, M. L. Fitzgerald et al., “The role of PPAR-γ in macrophage differentiation and cholesterol uptake,” Nature Medicine, vol. 7, no. 1, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R. M. Evans, “PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation,” Nature Medicine, vol. 7, no. 1, pp. 48–52, 2001. View at Publisher · View at Google Scholar · View at Scopus