Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012 (2012), Article ID 687492, 12 pages
http://dx.doi.org/10.1155/2012/687492
Review Article

PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis

Department of Biological, Geological and Environmental Sciences, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy

Received 27 February 2012; Accepted 21 April 2012

Academic Editor: Bart Staels

Copyright © 2012 Lina Sabatino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Google Scholar · View at Scopus
  2. A. Schweitzer, S. K. Knauer, and R. H. Stauber, “Nuclear receptors in head and neck cancer: current knowledge and perspectives,” International Journal of Cancer, vol. 126, no. 4, pp. 801–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Pyper, N. Viswakarma, S. Yu, and J. K. Reddy, “PPARα: energy combustion, hypolipidemia, inflammation and cancer,” Nuclear Receptor Signaling, vol. 8, p. e002, 2010. View at Google Scholar · View at Scopus
  8. D. Wang and R. N. DuBois, “Peroxisome proliferator-activated receptors and progression of colorectal cancer,” PPAR Research, vol. 2008, Article ID 931074, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Scatena, P. Bottoni, and B. Giardina, “Mitochondria, PPARs, and cancer: is receptor-independent action of PPAR agonists a key?” PPAR Research, vol. 2008, Article ID 256251, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Google Scholar · View at Scopus
  11. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. H. Lee, P. Olson, and R. M. Evans, “Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors,” Endocrinology, vol. 144, no. 6, pp. 2201–2207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Nahlé, “PPAR trilogy from metabolism to cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 4, pp. 397–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Michalik and W. Wahli, “Involvement of PPAR nuclear receptors in tissue injury and wound repair,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 598–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Grabacka, W. Placha, P. M. Plonka et al., “Inhibition of melanoma metastases by fenofibrate,” Archives of Dermatological Research, vol. 296, no. 2, pp. 54–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Grabacka, P. M. Plonka, K. Urbanska, and K. Reiss, “Peroxisome proliferator-Activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt,” Clinical Cancer Research, vol. 12, no. 10, pp. 3028–3036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Strakova, J. Ehrmann, J. Bartos, J. Malikova, J. Dolezel, and Z. Kolar, “Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors,” Neoplasma, vol. 52, no. 2, pp. 126–136, 2005. View at Google Scholar · View at Scopus
  20. R. Grau, C. Punzón, M. Fresno, and M. A. Iñiguez, “Peroxisome-proliferator-activated receptor α agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1,” Biochemical Journal, vol. 395, no. 1, pp. 81–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. F. S. Harman, C. J. Nicol, H. E. Marin, J. M. Ward, F. J. Gonzalez, and J. M. Peters, “Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis,” Nature Medicine, vol. 10, no. 5, pp. 481–483, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. K. R. Reed, O. J. Sansom, A. J. Hayes et al., “PPARδδ status and Apc-mediated tumourigenesis in the mouse intestine,” Oncogene, vol. 23, no. 55, pp. 8992–8996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Stephen, M. C. U. Gustafsson, M. Jarvis et al., “Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines,” Cancer Research, vol. 64, no. 9, pp. 3162–3170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Glinghammar, J. Skogsberg, A. Hamsten, and E. Ehrenborg, “PPARδ activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells,” Biochemical and Biophysical Research Communications, vol. 308, no. 2, pp. 361–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Fajas, J. C. Fruchart, and J. Auwerx, “PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter,” FEBS Letters, vol. 438, no. 1-2, pp. 55–60, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Al-Shali, H. Cao, N. Knoers, A. R. Hermus, C. J. Tack, and R. A. Hegele, “A single-base mutation in the peroxisome proliferator-activated receptor γ4 promoter associated with altered in vitro expression and partial lipodystrophy,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5655–5660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Zhu, K. Alvares, Q. Huang, M. S. Rao, and J. K. Reddy, “Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver,” Journal of Biological Chemistry, vol. 268, no. 36, pp. 26817–26820, 1993. View at Google Scholar · View at Scopus
  28. A. Meirhaeghe and P. Amouyel, “Impact of genetic variation of PPARγ in humans,” Molecular Genetics and Metabolism, vol. 83, no. 1-2, pp. 93–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Tontonoz, E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman, “mPPARγ2: tissue-specific regulator of an adipocyte enhancer,” Genes and Development, vol. 8, no. 10, pp. 1224–1234, 1994. View at Google Scholar · View at Scopus
  30. S. Hummasti and P. Tontonoz, “The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis,” Molecular Endocrinology, vol. 20, no. 6, pp. 1261–1275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Yamashita, T. Yamaguchi, M. Shimizu, N. Nakata, F. Hirose, and T. Osumi, “The transactivating function of peroxisome proliferator-activated receptor γ is negatively regulated by SUMO conjugation in the amino-terminal domain,” Genes to Cells, vol. 9, no. 11, pp. 1017–1029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Renaud and D. Moras, “Structural studies on nuclear receptors,” Cellular and Molecular Life Sciences, vol. 57, no. 12, pp. 1748–1769, 2000. View at Google Scholar · View at Scopus
  33. A. Yessoufou and W. Wahli, “Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels,” Swiss Medical Weekly, vol. 140, p. 13071, 2010. View at Google Scholar · View at Scopus
  34. R. Mukherjee, L. Jow, G. E. Croston, and J. R. Paterniti Jr, “Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists,” Journal of Biological Chemistry, vol. 272, no. 12, pp. 8071–8076, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Wang, J. Renes, F. Bouwman, A. Bunschoten, E. Mariman, and J. Keijer, “Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression,” Diabetologia, vol. 50, no. 3, pp. 654–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. E. A. Thompson, “PPARγ physiology and pathology in gastrointestinal epithelial cells,” Molecules and Cells, vol. 24, no. 2, pp. 167–176, 2007. View at Google Scholar · View at Scopus
  38. S. Drori, G. D. Girnun, L. Tou et al., “Hic-5 regulates an epithelial program mediated by PPARγ,” Genes and Development, vol. 19, no. 3, pp. 362–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Mann, D. C. K. Chu, A. Maxwell et al., “MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis,” Gastroenterology, vol. 138, no. 2, pp. 705–e4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. S. Welch, M. Ricote, T. E. Akiyama, F. J. Gonzalez, and C. K. Glass, “PPARγ and PPARδ negatively regulate specific subsets of lipopolysaccharide and IFN-γ target genes in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6712–6717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ricote and C. K. Glass, “PPARs and molecular mechanisms of transrepression,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 926–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Li, G. Pascual, and C. K. Glass, “Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4699–4707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response,” Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999. View at Google Scholar · View at Scopus
  44. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Matsuyama and R. Yoshimura, “A novel approach to anticancer therapies: peroxisome proliferator activator-receptor-γ as a new target therapy in the treatment of human urological cancer,” Endocrine, Metabolic and Immune Disorders, vol. 9, no. 1, pp. 76–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. M. Komar, “Peroxisome proliferator-activated receptors (PPARs) and ovarian function-implications for regulating steroidogenesis, differentiation, and tissue remodeling,” Reproductive Biology and Endocrinology, vol. 3, p. 41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. H. J. Burstein, G. D. Demetri, E. Mueller, P. Sarraf, B. M. Spiegelman, and E. P. Winer, “Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study,” Breast Cancer Research and Treatment, vol. 79, no. 3, pp. 391–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Copland, L. A. Marlow, S. Kurakata et al., “Novel high-affinity PPARγ agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1,” Oncogene, vol. 25, no. 16, pp. 2304–2317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. G. D. Demetri, C. D. M. Fletcher, E. Mueller et al., “Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3951–3956, 1999. View at Google Scholar · View at Scopus
  50. E. Mueller, P. Sarraf, P. Tontonoz et al., “Terminal differentiation of human breast cancer through PPARγ,” Molecular Cell, vol. 1, no. 3, pp. 465–470, 1998. View at Google Scholar · View at Scopus
  51. R. G. Mehta, E. Williamson, M. K. Patel, and H. P. Koeffler, “A ligand of peroxisome proliferator-activated receptor γ, retinoids, and prevention of preneoplastic mammary lesions,” Journal of the National Cancer Institute, vol. 92, no. 5, pp. 418–423, 2000. View at Google Scholar · View at Scopus
  52. I. Cellai, G. Petrangolini, M. Tortoreto et al., “In vivo effects of rosiglitazone in a human neuroblastoma xenograft,” British Journal of Cancer, vol. 102, no. 4, pp. 685–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. P. Heaney, M. Fernando, and S. Melmed, “PPAR-γ receptor ligands: novel therapy for pituitary adenomas,” Journal of Clinical Investigation, vol. 111, no. 9, pp. 1381–1388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Kubota, K. Koshizuka, E. A. Williamson et al., “Ligand for peroxisome proliferator-activated receptor γ (Troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo,” Cancer Research, vol. 58, no. 15, pp. 3344–3352, 1998. View at Google Scholar · View at Scopus
  56. F. Yin, S. Wakino, Z. Liu et al., “Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 916–922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kato, T. Kusumi, S. Tsuchida, M. Tanaka, M. Sasaki, and H. Kudo, “Induction of differentiation and peroxisome proliferator-activated receptor γ expression in colon cancer cell lines by troglitazone,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 2, pp. 73–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Tsubouchi, H. Sano, Y. Kawahito et al., “Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-γ agonists through induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 400–405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Koga, S. Sakisaka, M. Harada et al., “Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines,” Hepatology, vol. 33, no. 5, pp. 1087–1097, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Motomura, T. Okumura, N. Takahashi, T. Obara, and Y. Kohgo, “Activation of peroxisome proliferator-activated receptor γ by troglitazone inhibits cell growth through the increase of p27(Kip1) in human pancreatic carcinoma cells,” Cancer Research, vol. 60, no. 19, pp. 5558–5564, 2000. View at Google Scholar · View at Scopus
  61. B. Farrow and B. M. Evers, “Activation of PPARγ increases PTEN expression in pancreatic cancer cells,” Biochemical and Biophysical Research Communications, vol. 301, no. 1, pp. 50–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Y. Lee, G. Y. Hur, K. H. Jung et al., “PPAR-γ agonist increase gefitinib's antitumor activity through PTEN expression,” Lung Cancer, vol. 51, no. 3, pp. 297–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Zhang, N. Wu, Z. Li, L. Wang, J. Jin, and X. L. Zha, “PPARγ activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404,” Cancer Biology and Therapy, vol. 5, no. 8, pp. 1008–1014, 2006. View at Google Scholar · View at Scopus
  64. K. Tachibana, D. Yamasaki, K. Ishimoto, and T. Doi, “The role of PPARs in cancer,” PPAR Research, vol. 2008, Article ID 102737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Inoue, T. Tanabe, and K. Umesono, “Feedback control of cyclooxygenase-2 expression through PPARγ,” Journal of Biological Chemistry, vol. 275, no. 36, pp. 28028–28032, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Liu, C. Zang, M. H. Fenner, K. Possinger, and E. Elstner, “PPARγ ligands and ATRA inhibit the invasion of human breast cancer cells in vitro,” Breast Cancer Research and Treatment, vol. 79, no. 1, pp. 63–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Shen, C. Deng, and M. Zhang, “Peroxisome proliferator-activated receptor γ agonists inhibit the proliferation and invasion of human colon cancer cells,” Postgraduate Medical Journal, vol. 83, no. 980, pp. 414–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. A. Gupta, P. Sarraf, J. A. Brockman et al., “Peroxisome proliferator-activated receptor γ and transforming growth factor-β pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22,” Journal of Biological Chemistry, vol. 278, no. 9, pp. 7431–7438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Satoh, M. Toyoda, H. Hoshino et al., “Activation of peroxisome proliferator-activated receptor-γ stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells,” Oncogene, vol. 21, no. 14, pp. 2171–2180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. G. G. Chen, J. F. Y. Lee, S. H. Wang, U. P. F. Chan, P. C. Ip, and W. Y. Lau, “Apoptosis induced by activation of peroxisome-proliferator activated receptor-γ is associated with Bcl-2 and Nf-kB in human colon cancer,” Life Sciences, vol. 70, no. 22, pp. 2631–2646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Xin, S. Yang, J. Kowalski, and M. E. Gerritsen, “Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 9116–9121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Panigrahy, S. Singer, L. Q. Shen et al., “PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis,” Journal of Clinical Investigation, vol. 110, no. 7, pp. 923–932, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Kojima, T. Morisaki, N. Sasaki et al., “Increased nuclear factor-κB activation in human colorectal carcinoma and its correlation with tumor progression,” Anticancer Research B, vol. 24, no. 2, pp. 675–681, 2004. View at Google Scholar · View at Scopus
  74. C. Zeng, J. H. Xiao, M. J. Chang, and J. L. Wang, “Beneficial effects of THSG on acetic acid-induced experimental colitis: involvement of upregulation of PPARγ and inhibition of the Nf-κB inflammatory pathway,” Molecules, vol. 16, no. 10, pp. 8552–8568, 2011. View at Google Scholar
  75. L. Pelletier, S. Rebouissou, D. Vignjevic, P. Bioulac-Sage, and J. Zucman-Rossi, “HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines,” BMC Cancer, vol. 11, p. 427, 2011. View at Publisher · View at Google Scholar
  76. A. K. Reka, H. Kurapati, V. R. Narala et al., “Peroxisome proliferator-activated receptor-g activation inhibits tumor metastasis by antagonizing smad3-mediated epithelial-mesenchymal transition,” Molecular Cancer Therapeutics, vol. 9, no. 12, pp. 3221–3232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Kristiansen, J. Jacob, A. C. Buckendahl et al., “Peroxisome proliferator-activated receptor γ is highly expressed in pancreatic cancer and is associated with shorter overall survival times,” Clinical Cancer Research, vol. 12, no. 21, pp. 6444–6451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Tyagi, P. Gupta, A. Saini, C. Kaushal, and S. Sharma, “The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases,” Journal of Advanced Pharmaceutical Technology and Research, vol. 2, no. 4, pp. 236–240, 2011. View at Publisher · View at Google Scholar
  79. F. Ye, H. Lemieux, C. L. Hoppel et al., “Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism,” Journal of Biological Chemistry, vol. 286, no. 46, pp. 40013–40024, 2011. View at Publisher · View at Google Scholar
  80. J. A. Menendez, “Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 381–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Lee, A. Drakaki, D. Iliopoulos, and K. Struhl, “MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells,” Oncogene. In press. View at Publisher · View at Google Scholar
  82. W. Su, C. R. Bush, B. M. Necela et al., “Differential expression, distribution, and function of PPAR-γ in the proximal and distal colon,” Physiological Genomics, vol. 30, no. 3, pp. 342–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Weitz, M. Koch, J. Debus, T. Höhler, P. R. Galle, and M. W. Büchler, “Colorectal cancer,” Lancet, vol. 365, no. 9454, pp. 153–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPARγ enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Lefebvre, B. Paulweber, L. Fajas et al., “Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Google Scholar
  86. N. Niho, M. Takahashi, T. Kitamura et al., “Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands,” Cancer Research, vol. 63, no. 18, pp. 6090–6095, 2003. View at Google Scholar · View at Scopus
  87. N. Niho, M. Takahashi, Y. Shoji et al., “Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPARγ ligand,” Cancer Science, vol. 94, no. 11, pp. 960–964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. C. A. McAlpine, Y. Barak, I. Matise, and R. T. Cormier, “Intestinal-specific PPARγ deficiency enhances tumorigenesis in ApcMin/+ mice,” International Journal of Cancer, vol. 119, no. 10, pp. 2339–2346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. C. R. Bush, J. M. Havens, B. M. Necela et al., “Functional genomic analysis reveals cross-talk between peroxisome proliferator-activated receptor γ and calcium signaling in human colorectal cancer cells,” Journal of Biological Chemistry, vol. 282, no. 32, pp. 23387–23401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. R. A. Gupta, P. Sarraf, E. Mueller et al., “Peroxisome proliferator-activated receptor γ-mediated differentiation: a mutation in colon cancer cells reveals divergent and cell type-specific mechanisms,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22669–22677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Yoshizumi, T. Ohta, I. Ninomiya et al., “Thiazolidinedione, a peroxisome proliferator-activated receptor-γ ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects,” International journal of oncology, vol. 25, no. 3, pp. 631–639, 2004. View at Google Scholar · View at Scopus
  92. H. Kohno, S. Yoshitani, S. Takashima et al., “Troglitazone, a ligand for peroxisome proliferator-activated receptor γ, inhibits chemically-induced aberrant crypt foci in rats,” Japanese Journal of Cancer Research, vol. 92, no. 4, pp. 396–403, 2001. View at Google Scholar · View at Scopus
  93. T. Tanaka, H. Kohno, S. I. Yoshitani et al., “Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats,” Cancer Research, vol. 61, no. 6, pp. 2424–2428, 2001. View at Google Scholar · View at Scopus
  94. E. Osawa, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor γ ligands suppress colon carcinogenesis induced by azoxymethane in mice,” Gastroenterology, vol. 124, no. 2, pp. 361–367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. S. S. Palakurthi, H. Aktas, L. M. Grubissich, R. M. Mortensen, and J. A. Halperin, “Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation,” Cancer Research, vol. 61, no. 16, pp. 6213–6218, 2001. View at Google Scholar · View at Scopus
  96. M. A. Peraza, A. D. Burdick, H. E. Marin, F. J. Gonzalez, and J. M. Peters, “The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR),” Toxicological Sciences, vol. 90, no. 2, pp. 269–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPARγ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Balkwill, K. A. Charles, and A. Mantovani, “Smoldering and polarized inflammation in the initiation and promotion of malignant disease,” Cancer Cell, vol. 7, no. 3, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Danese, A. Malesci, and S. Vetrano, “Colitis-associated cancer: the dark side of inflammatory bowel disease,” Gut, vol. 60, no. 12, pp. 1609–1610, 2011. View at Publisher · View at Google Scholar
  100. Y. M. Shah, K. Morimura, and F. J. Gonzalez, “Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis,” American Journal of Physiology, vol. 292, no. 2, pp. G657–G666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPARγ associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Ikezoe, C. W. Miller, S. Kawano et al., “Mutational analysis of the peroxisome proliferator-activated receptor γ in human malignancies,” Cancer Research, vol. 61, no. 13, pp. 5307–5310, 2001. View at Google Scholar
  103. E. Burgermeister and R. Seger, “MAPK kinases as nucleo-cytoplasmic shuttles for PPARγ,” Cell Cycle, vol. 6, no. 13, pp. 1539–1548, 2007. View at Google Scholar · View at Scopus
  104. T. M. Garcia-Bates, G. M. Lehmann, P. J. Simpson-Haidaris, S. H. Bernstein, P. J. Sime, and R. P. Phipps, “Role of peroxisome proliferator-activated receptor γ and its ligands in the treatment of hematological malignancies,” PPAR Research, vol. 2008, Article ID 834612, 18 pages, 2008. View at Publisher · View at Google Scholar
  105. M. Pancione, N. Forte, L. Sabatino et al., “Reduced beta-catenin and peroxisome proliferator-activated receptor-γ expression levels are associated with colorectal cancer metastatic progressione: correlation with tumor-associated macrophages, cyclooxygenase 2 and patient outcome,” Human Pathology, vol. 40, no. 5, pp. 714–725, 2009. View at Google Scholar
  106. S. Ogino, K. Shima, Y. Baba et al., “Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARγ) is associated with good prognosis,” Gastroenterology, vol. 136, no. 4, pp. 1242–1250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Berdasco and M. Esteller, “Aberrant epigenetic landscape in cancer: how cellular identity goes awry,” Developmental Cell, vol. 19, no. 5, pp. 698–711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. V. K. Rakyan, T. A. Down, D. J. Balding, and S. Beck, “Epigenome-wide association studies for common human diseases,” Nature Reviews Genetics, vol. 12, no. 8, pp. 529–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Vogelstein, E. R. Fearon, S. R. Hamilton et al., “Genetic alterations during colorectal-tumor development,” New England Journal of Medicine, vol. 319, no. 9, pp. 525–532, 1988. View at Google Scholar · View at Scopus
  110. F. J. Carmona and M. Esteller, “Epigenomics of human colon cancer,” Mutation Research, vol. 693, no. 1-2, pp. 53–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Esteller, “Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes,” European Journal of Cancer, vol. 36, no. 18, pp. 2294–2300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  112. A. P. Feinberg and B. Tycko, “The history of cancer epigenetics,” Nature Reviews Cancer, vol. 4, no. 2, pp. 143–153, 2004. View at Google Scholar · View at Scopus
  113. R. Venkatachalam, M. J. Ligtenberg, N. Hoogerbrugge, D. R. de Bruijn, R. P. Kuiper, and A. Geurts van Kessel, “The epigenetics of (hereditary) colorectal cancer,” Cancer Genetics and Cytogenetics, vol. 203, no. 1, pp. 1–6, 2010. View at Google Scholar · View at Scopus
  114. J. P. Issa, “Colon cancer: it's CIN or CIMP,” Clinical Cancer Research, vol. 14, no. 19, pp. 5939–5940, 2008. View at Google Scholar
  115. B. Jin, B. Yao, J. L. Li et al., “DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer,” Cancer Research, vol. 69, no. 18, pp. 7412–7421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Gowher, C. J. Stockdale, R. Goyal, H. Ferreira, T. Owen-Hughes, and A. Jeltsch, “De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases,” Biochemistry, vol. 44, no. 29, pp. 9899–9904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Nosho, K. Shima, N. Irahara et al., “DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer,” Clinical Cancer Research, vol. 15, no. 11, pp. 3663–3671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. H. G. Linhart, H. Lin, Y. Yamada et al., “Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing,” Genes and Development, vol. 21, no. 23, pp. 3110–3122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. R. A. Varier and H. T. M. Timmers, “Histone lysine methylation and demethylation pathways in cancer,” Biochimica et Biophysica Acta, vol. 1815, no. 1, pp. 75–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Lehnertz, Y. Ueda, A. A. H. A. Derijck et al., “Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin,” Current Biology, vol. 13, no. 14, pp. 1192–1200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Tachibana, J. Ueda, M. Fukuda et al., “Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9,” Genes and Development, vol. 19, no. 7, pp. 815–826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Özdaǧ, A. E. Teschendorff, A. A. Ahmed et al., “Differential expression of selected histone modifier genes in human solid cancers,” BMC Genomics, vol. 7, p. 90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Kondo, L. Shen, A. S. Cheng et al., “Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation,” Nature Genetics, vol. 40, no. 6, pp. 741–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Shilatifard, “Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation,” Current Opinion in Cell Biology, vol. 20, no. 3, pp. 341–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Portela and M. Esteller, “Epigenetic modifications and human disease,” Nature Biotechnology, vol. 28, no. 10, pp. 1057–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Vaissière, C. Sawan, and Z. Herceg, “Epigenetic interplay between histone modifications and DNA methylation in gene silencing,” Mutation Research, vol. 659, no. 1-2, pp. 40–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Meissner, T. S. Mikkelsen, H. Gu et al., “Genome-scale DNA methylation maps of pluripotent and differentiated cells,” Nature, vol. 454, no. 7205, pp. 766–770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Viré, C. Brenner, R. Deplus et al., “The Polycomb group protein EZH2 directly controls DNA methylation,” Nature, vol. 439, no. 7078, pp. 871–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. P. O. Estève, G. C. Hang, A. Smallwood et al., “Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication,” Genes and Development, vol. 20, no. 22, pp. 3089–3103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Epsztejn-Litman, N. Feldman, M. Abu-Remaileh et al., “De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes,” Nature Structural and Molecular Biology, vol. 15, no. 11, pp. 1176–1183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. L. Parry and A. R. Clarke, “The roles of the methyl-CpG binding proteins in cancer,” Genes and Cancer, vol. 2, no. 6, pp. 618–630, 2011. View at Publisher · View at Google Scholar
  132. X. Nan, H. H. Ng, C. A. Johnson et al., “Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex,” Nature, vol. 393, no. 6683, pp. 386–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Rottach, C. Frauer, G. Pichler, I. M. Bonapace, F. Spada, and H. Leonhardt, “The multi-domain protein Np95 connects DNA methylation and histone modification,” Nucleic Acids Research, vol. 38, no. 6, Article ID gkp1152, pp. 1796–1804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. A. L. Tien, S. Senbanerjee, A. Kulkarni et al., “UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis,” Biochemical Journal, vol. 435, no. 1, pp. 175–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Meilinger, K. Fellinger, S. Bultmann et al., “Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells,” EMBO Reports, vol. 10, no. 11, pp. 1259–1264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. R. Kogo, T. Shimamura, K. Mimori et al., “Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers,” Cancer Research, vol. 71, no. 20, pp. 6320–6326, 2011. View at Google Scholar
  137. E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, p. 38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Fujiki, F. Kano, K. Shiota, and M. Murata, “Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes,” BMC Biology, vol. 7, p. 38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. N. Salma, H. Xiao, E. Mueller, and A. N. Imbalzano, “Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor γ nuclear hormone receptor,” Molecular and Cellular Biology, vol. 24, no. 11, pp. 4651–4663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Mann, F. Oakley, F. Akiboye, A. Elsharkawy, A. W. Thorne, and D. A. Mann, “Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis,” Cell Death and Differentiation, vol. 14, no. 2, pp. 275–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Pancione, L. Sabatino, A. Fucci et al., “Epigenetic silencing of peroxisome proliferator- activated receptor γ is a biomarker for colorectal cancer progression and adverse patients' outcome,” PLoS ONE, vol. 5, no. 12, Article ID e14229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Sabatino, A. Fucci, M. Pancione et al., “UHRF1 coordinates peroxisome proliferator activated receptor γ (PPARG) epigenetic silencing and mediates colorectal cancer progression,” Oncogene. In press. View at Publisher · View at Google Scholar
  143. H. A. Rogers, J. P. Kilday, C. Mayne et al., “Supratentorial and spinal pediatric ependymomas display a hypermethylated phenotype which includes the loss of tumor suppressor genes involved in the control of cell growth and death,” Acta Neuropathologica, vol. 123, no. 5, pp. 711–725, 2012. View at Google Scholar