Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2013, Article ID 256508, 7 pages
http://dx.doi.org/10.1155/2013/256508
Review Article

Expression and Function of PPARs in Placenta

Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

Received 30 November 2012; Revised 16 January 2013; Accepted 16 January 2013

Academic Editor: Udo Jeschke

Copyright © 2013 Satoru Matsuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Vacca, C. Degirolamo, R. Mariani-Costantini, G. Palasciano, and A. Moschetta, “Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 3, no. 5, pp. 562–587, 2011. View at Publisher · View at Google Scholar
  2. I. G. Schulman, “Nuclear receptors as drug targets for metabolic disease,” Advanced Drug Delivery Reviews, vol. 62, no. 13, pp. 1307–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Wahli and L. Michalik, “PPARs at the crossroads of lipid signaling and inflammation,” Trends in Endocrinology & Metabolism, vol. 23, no. 7, pp. 351–363, 2012. View at Publisher · View at Google Scholar
  4. J. Becker, C. Delayre-Orthez, N. Frossard, and F. Pons, “Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases?” Fundamental and Clinical Pharmacology, vol. 20, no. 5, pp. 429–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Giaginis, A. Tsantili-Kakoulidou, and S. Theocharis, “Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism,” Fundamental and Clinical Pharmacology, vol. 21, no. 3, pp. 231–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Nagy, A. Szanto, I. Szatmari, and L. Széles, “Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response,” Physiological Reviews, vol. 92, no. 2, pp. 739–789, 2012. View at Publisher · View at Google Scholar
  7. M. C. Kruger, M. Coetzee, M. Haag, and H. Weiler, “Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone,” Progress in Lipid Research, vol. 49, no. 4, pp. 438–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Martínez, M. Kurtz, E. Capobianco, R. Higa, V. White, and A. Jawerbaum, “PPARα agonists regulate lipid metabolism and nitric oxide production and prevent placental overgrowth in term placentas from diabetic rats,” Journal of Molecular Endocrinology, vol. 47, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Shalom-Barak, J. M. Nicholas, Y. Wang et al., “Peroxisome proliferator-activated receptor γ controls Muc1 transcription in trophoblasts,” Molecular and Cellular Biology, vol. 24, no. 24, pp. 10661–10669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Puttabyatappa, C. A. VandeVoort, and C. L. Chaffin, “hCG-induced down-regulation of PPARγ and liver X receptors promotes periovulatory progesterone synthesis by macaque granulosa cells,” Endocrinology, vol. 151, no. 12, pp. 5865–5872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. P. Kowalewski, M. T. Dyson, P. R. Manna, and D. M. Stocco, “Involvement of peroxisome proliferator-activated receptor in gonadal steroidogenesis and steroidogenic acute regulatory protein expression,” Reproduction, Fertility and Development, vol. 21, no. 7, pp. 909–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Zhang, X. Xu, L. Chen et al., “Molecular determinants of magnolol targeting both RXRα and PPARγ,” PLoS One, vol. 6, no. 11, article e28253, 2011. View at Google Scholar
  13. O. Wendling, P. Chambon, and M. Mark, “Retinoid X receptors are essential for early mouse development Land placentogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 547–551, 1999. View at Google Scholar · View at Scopus
  14. Y. Barak, M. C. Nelson, E. S. Ong et al., “PPARγ is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. W. T. Schaiff, F. F. Knapp Jr., Y. Barak, T. Biron-Shental, D. M. Nelson, and Y. Sadovsky, “Ligand-activated peroxisome proliferator activated receptor γ alters placental morphology and placental fatty acid uptake in mice,” Endocrinology, vol. 148, no. 8, pp. 3625–3634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. G. Lambe and J. D. Tugwood, “A human peroxisome-proliferator-activated receptor-γ is activated by inducers of adipogenesis, including thiazalidinedione drugs,” European Journal of Biochemistry, vol. 239, no. 1, pp. 1–7, 1996. View at Google Scholar · View at Scopus
  17. R. L. Schild, C. M. Sonnenberg-Hirche, W. T. Schaiff, I. Bildirici, D. M. Nelson, and Y. Sadovsky, “The kinase p38 regulates peroxisome proliferator activated receptor-γ in human trophoblasts,” Placenta, vol. 27, no. 2-3, pp. 191–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Degrelle, P. Murthi, D. Evain-Brion, T. Fournier, and I. Hue, “Expression and localization of DLX3, PPARG and SP1 in bovine trophoblast during binucleated cell differentiation,” Placenta, vol. 32, no. 11, pp. 917–920, 2011. View at Publisher · View at Google Scholar
  19. M. Ruebner, M. Langbein, P. L. Strissel et al., “Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis,” Journal of Cellular Biochemistry, vol. 113, no. 7, pp. 2383–2396, 2012. View at Publisher · View at Google Scholar
  20. R. Ringseis and K. Eder, “Influence of pharmacological PPARα activators on carnitine homeostasis in proliferating and non-proliferating species,” Pharmacological Research, vol. 60, no. 3, pp. 179–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. D. Wagner and N. Wagner, “Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions,” Pharmacology and Therapeutics, vol. 125, no. 3, pp. 423–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Cipolletta, M. Feuerer, A. Li et al., “PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells,” Nature, vol. 486, no. 7404, pp. 549–553, 2012. View at Google Scholar
  23. C. Huin, L. Corriveau, A. Bianchi et al., “Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract,” Journal of Histochemistry and Cytochemistry, vol. 48, no. 5, pp. 603–611, 2000. View at Google Scholar · View at Scopus
  24. C. M. Komar and T. E. Curry, “Localization and expression of messenger RNAs for the peroxisome proliferator-activated receptors in ovarian tissue from naturally cycling and pseudopregnant rats,” Biology of Reproduction, vol. 66, no. 5, pp. 1531–1539, 2002. View at Google Scholar · View at Scopus
  25. L. Fedele, E. Somigliana, G. Frontino, L. Benaglia, and P. Vigano, “New drugs in development for the treatment of endometriosis,” Expert Opinion on Investigational Drugs, vol. 17, no. 8, pp. 1187–1202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Gui, Z. Cai, J. V. Silha, and L. J. Murphy, “Variations in parametrial white adipose tissue mass during the mouse estrous cycle: relationship with the expression of peroxisome proliferator-activated receptor-γ and retinoic acid receptor-α,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 8-9, pp. 887–892, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Benz, U. Kintscher, and A. Foryst-Ludwig, “Sex-specific differences in type 2 diabetes mellitus and dyslipidemia therapy: PPAR agonists,” Handbook of Experimental Pharmacology, vol. 214, pp. 387–410, 2012. View at Google Scholar
  28. T. Waku, T. Shiraki, T. Oyama, and K. Morikawa, “Atomic structure of mutant PPARγ LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARγ/RXRα function by covalently bound ligands,” FEBS Letters, vol. 583, no. 2, pp. 320–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Yu and J. K. Reddy, “Transcription coactivators for peroxisome proliferator-activated receptors,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 936–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Google Scholar · View at Scopus
  31. Z. Yu, C. Schneider, W. E. Boeglin, and A. R. Brash, “Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARα,” Lipids, vol. 42, no. 6, pp. 491–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ibabe, A. Herrero, and M. P. Cajaraville, “Modulation of peroxisome proliferator-activated receptors (PPARs) by PPARα- and PPARγ-specific ligands and by 17β-estradiol in isolated zebrafish hepatocytes,” Toxicology in Vitro, vol. 19, no. 6, pp. 725–735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Kouroumichakis, N. Papanas, P. Zarogoulidis, V. Liakopoulos, E. Maltezos, and D. P. Mikhailidis, “Fibrates: therapeutic potential for diabetic nephropathy?” European Journal of Internal Medicine, vol. 23, no. 4, pp. 309–316, 2012. View at Publisher · View at Google Scholar
  34. S. N. Friedland, A. Leong, K. B. Filion et al., “The cardiovascular effects of peroxisome proliferator-activated receptor agonists,” American Journal of Medicine, vol. 125, no. 2, pp. 126–133, 2012. View at Publisher · View at Google Scholar
  35. N. Saraf, P. K. Sharma, S. C. Mondal, V. K. Garg, and A. K. Singh, “Role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization,” Journal of Pharmacy and Pharmacology, vol. 64, no. 2, pp. 161–171, 2012. View at Publisher · View at Google Scholar
  36. K. Subbaramaiah, D. T. Lin, J. C. Hart, and A. J. Dannenberg, “Peroxisome proliferator-activated receptor γ ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 12440–12448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Matsumoto, W. Ma, W. Smalley, J. Trzaskos, R. M. Breyer, and S. K. Dey, “Diversification of cyclooxygenase-2-derived prostaglandins in ovulation and implantation,” Biology of Reproduction, vol. 64, no. 5, pp. 1557–1565, 2001. View at Google Scholar · View at Scopus
  38. K. H. Ruan and J. M. Dogné, “Implications of the molecular basis of prostacyclin biosynthesis and signaling in pharmaceutical designs,” Current Pharmaceutical Design, vol. 12, no. 8, pp. 925–941, 2006. View at Publisher · View at Google Scholar
  39. P. Froment, F. Gizard, D. Defever, B. Staels, J. Dupont, and P. Monget, “Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition,” Journal of Endocrinology, vol. 189, no. 2, pp. 199–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Mendez and M. C. LaPointe, “PPARγ inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes,” Hypertension, vol. 42, no. 4, pp. 844–850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Fournier, L. Pavan, A. Tarrade et al., “The role of PPAR-γ/RXR-α heterodimers in the regulation of human trophoblast invasion,” Annals of the New York Academy of Sciences, vol. 973, pp. 26–30, 2002. View at Google Scholar · View at Scopus
  42. A. Tarrade, K. Schoonjans, J. Guibourdenche et al., “PPARγ/RXRα heterodimers are involved in human CGβ synthesis and human trophoblast differentiation,” Endocrinology, vol. 142, no. 10, pp. 4504–4514, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Tarrade, C. Rochette-Egly, J. Guibourdenche, and D. Evain-Brion, “The expression of nuclear retinoid receptors in human implantation,” Placenta, vol. 21, no. 7, pp. 703–710, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Wolf, “Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor?” Nutrition Reviews, vol. 64, no. 12, pp. 532–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Nezbedova and J. Brtko, “1α,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action,” Endocrine Regulations, vol. 38, no. 1, pp. 29–38, 2004. View at Google Scholar · View at Scopus
  47. S. D. Clarke, P. Thuillier, R. A. Baillie, and X. Sha, “Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors,” American Journal of Clinical Nutrition, vol. 70, no. 4, pp. 566–571, 1999. View at Google Scholar · View at Scopus
  48. Q. Wang, H. Fujii, and G. T. Knipp, “Expression of PPAR and RXR isoforms in the developing rat and human term placentas,” Placenta, vol. 23, no. 8-9, pp. 661–671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Handschuh, J. Guibourdenche, M. Cocquebert et al., “Expression and regulation by PPARγ of hCG α- and β-subunits: comparison between villous and invasive extravillous trophoblastic Cells,” Placenta, vol. 30, no. 12, pp. 1016–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. J. Holdsworth-Carson, M. Permezel, G. E. Rice, and M. Lappas, “Preterm and infection-driven preterm labor: the role of peroxisome proliferator-activated receptors and retinoid X receptor,” Reproduction, vol. 137, no. 6, pp. 1007–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. J. Holdsworth-Carson, M. Permezel, C. Riley, G. E. Rice, and M. Lappas, “Peroxisome Proliferator-activated receptors and retinoid X receptor-alpha in term human gestational tissues: tissue specific and labour-associated Changes,” Placenta, vol. 30, no. 2, pp. 176–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Borel, D. Gallot, G. Marceau, V. Sapin, and L. Blanchon, “Placental implications of peroxisome proliferator-activated receptors in gestation and parturition,” PPAR Research, vol. 2008, Article ID 758562, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. J. Lin, E. Ford, M. Haigis, G. Liszt, and L. Guarente, “Calorie restriction extends yeast life span by lowering the level of NADH,” Genes and Development, vol. 18, no. 1, pp. 12–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Potente, L. Ghaeni, D. Baldessari et al., “SIRT1 controls endothelial angiogenic functions during vascular growth,” Genes and Development, vol. 21, no. 20, pp. 2644–2658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Oka, R. Alcendor, P. Zhai et al., “PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway,” Cell Metabolism, vol. 14, no. 5, pp. 598–611, 2011. View at Publisher · View at Google Scholar
  56. A. Legutko, T. Marichal, L. Fiévez et al., “Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-γ activity in dendritic cells,” The Journal of Immunology, vol. 187, no. 9, pp. 4517–4529, 2011. View at Publisher · View at Google Scholar
  57. F. Picard, M. Kurtev, N. Chung et al., “Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ,” Nature, vol. 429, no. 6993, pp. 771–776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Miyashita, T. Watanabe, H. Hayashi et al., “Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1,” PLoS One, vol. 7, no. 10, article e46459, 2012. View at Google Scholar
  59. M. Lappas, A. Mitton, R. Lim, G. Barker, C. Riley, and M. Permezel, “SIRT1 is a novel regulator of key pathways of human labor,” Biology of Reproduction, vol. 84, no. 1, pp. 167–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. K. Kim, S. Mun, M. S. Kim, M. B. Kim, B. K. Sa, and J. K. Hwang, “5, 7-Dimethoxyflavone, an activator of PPARα/γ, inhibits UVB-induced MMP expression in human skin fibroblast cells,” Experimental Dermatology, vol. 21, no. 3, pp. 211–216, 2012. View at Publisher · View at Google Scholar
  61. E. Papageorgiou, N. Pitulis, P. Msaouel, P. Lembessis, and M. Koutsilieris, “The non-genomic crosstalk between PPAR-γ ligands and ERK1/2 in cancer cell lines,” Expert Opinion on Therapeutic Targets, vol. 11, no. 8, pp. 1071–1085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Pang, J. Wang, J. Benicky, E. Sánchez-Lemus, and J. M. Saavedra, “Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways,” Journal of Neuroinflammation, vol. 9, no. 1, p. 102, 2012. View at Publisher · View at Google Scholar
  63. N. Patel, C. S. Gonsalves, P. Malik, and V. K. Kalra, “Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1α,” Blood, vol. 112, no. 3, pp. 856–865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Maldonado-Pérez, P. Brown, K. Morgan, R. P. Millar, E. A. Thompson, and H. N. Jabbour, “Prokineticin 1 modulates IL-8 expression via the calcineurin/NFAT signaling pathway,” Biochimica et Biophysica Acta, vol. 1793, no. 7, pp. 1315–1324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Zhang, Y. Zhang, H. Zhang, J. Wang, R. Cui, and J. Dai, “Sex differences in transcriptional expression of FABPs in zebrafish liver after chronic perfluorononanoic acid exposure,” Environmental Science & Technology, vol. 46, no. 9, pp. 5175–5182, 2012. View at Publisher · View at Google Scholar
  66. J. M. Keller, P. Collet, A. Bianchi et al., “Implications of peroxisome proliferator-activated receptors (PPARS) in development, cell life status and disease,” International Journal of Developmental Biology, vol. 44, no. 5, pp. 429–442, 2000. View at Google Scholar · View at Scopus
  67. S. E. Campbell, K. A. Mehan, R. J. Tunstall, M. A. Febbraio, and D. Cameron-Smith, “17β-Estradiol upregulates the expression of peroxisome proliferator-activated receptor α and lipid oxidative genes in skeletal muscle,” Journal of Molecular Endocrinology, vol. 31, no. 1, pp. 37–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. U. A. White and J. M. Stephens, “Transcriptional factors that promote formation of white adipose tissue,” Molecular and Cellular Endocrinology, vol. 318, no. 1-2, pp. 10–14, 2010. View at Publisher · View at Google Scholar
  69. H. S. Jung, Y. J. Lee, Y. H. Kim, S. Paik, J. W. Kim, and J. W. Lee, “Peroxisome proliferator-activated receptor gamma/signal transducers and activators of transcription 5A pathway plays a key factor in adipogenesis of human bone marrow-derived stromal cells and 3T3-L1 preadipocytes,” Stem Cells and Development, vol. 21, no. 3, pp. 465–475, 2012. View at Publisher · View at Google Scholar