Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2013, Article ID 391628, 7 pages
http://dx.doi.org/10.1155/2013/391628
Clinical Study

Dual PPAR α/γ Agonism Normalizes Lipoprotein Profile of Renal Dyslipidemia

1Department of Nephrology, Sahlgrenska University Hospital, 41345 Göteborg, Sweden
2AstraZeneca Research & Development, 43183 Mölndal, Sweden
3Lipid and Lipoprotein Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA

Received 11 September 2012; Accepted 27 February 2013

Academic Editor: Brian Finck

Copyright © 2013 O. Samuelsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. O. Attman and O. Samuelsson, “Dyslipidemia of kidney disease,” Current Opinion in Lipidology, vol. 20, no. 4, pp. 293–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. D. Vaziri, “Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences,” American Journal of Physiology, vol. 290, no. 2, pp. F262–F272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Ritz and C. Wanner, “Lipid abnormalities and cardiovascular risk in renal disease,” Journal of the American Society of Nephrology, vol. 19, no. 6, pp. 1065–1070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Becker, F. Kronenberg, J. T. Kielstein et al., “Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1091–1098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Charlesworth, A. D. Kriketos, J. E. Jones, J. H. Erlich, L. V. Campbell, and P. W. Peake, “Insulin resistance and postprandial triglyceride levels in primary renal disease,” Metabolism, vol. 54, no. 6, pp. 821–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. H. Mak, “Insulin and its role in chronic kidney disease,” Pediatric Nephrology, vol. 23, no. 3, pp. 355–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. A. Kaysen, “Metabolic syndrome and renal failure: similarities and differences,” Panminerva Medica, vol. 48, no. 3, pp. 151–164, 2006. View at Google Scholar · View at Scopus
  8. M. J. Sarnak, “Cardiovascular complications in chronic kidney disease,” American Journal of Kidney Diseases, vol. 41, supplement 5, pp. S11–S17, 2003. View at Google Scholar · View at Scopus
  9. T. Mazzone, A. Chait, and J. Plutzky, “Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies,” The Lancet, vol. 371, no. 9626, pp. 1800–1809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tonelli, D. Collins, S. Robins, H. Bloomfield, and G. C. Curhan, “Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency,” Kidney International, vol. 66, no. 3, pp. 1123–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Schneider, E. Ferrannini, R. DeFronzo, G. Schernthaner, J. Yates, and E. Erdmann, “Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease,” Journal of the American Society of Nephrology, vol. 19, no. 1, pp. 182–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Fagerberg, H. Schuster, G. S. Birketvedt, S. Tonstad, K. P. Öhman, and I. Gause-Nilsson, “Improvement of postprandial lipid handling and glucose tolerance in a non-diabetic population by the dual PPARα/γ agonist, tesaglitazar,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 174–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Bays, J. McElhattan, and B. S. Bryzinski, “A double-blind, randomised trial of tesaglitazar versus pioglitazone in patients with type 2 diabetes mellitus,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 181–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. E. Ratner, S. Parikh, and C. Tou, “Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 214–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. AstraZeneca, “A 24-week, randomised parallel-group, multi-centre, active controlled (pioglitazone) study of the renal effects of tesaglitazar in patients with type 2 diabetes mellitus: ARMOR (Analysing Renal Mechanisms of Creatinine Excretion in Patients on Tesaglitazar),” February 2013, http://www.astrazenecaclinicaltrials.com/_mshost800325/content/clinical-trials/resources/pdf/8579785.
  16. B. Hamrén, H. Ericsson, O. Samuelsson, and M. O. Karlsson, “Mechanistic modelling of tesaglitazar pharmacokinetic data in subjects with various degrees of renal function—evidence of interconversion,” British Journal of Clinical Pharmacology, vol. 65, no. 6, pp. 855–863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. O. Attman and P. Alaupovic, “Lipid and apolipoprotein profiles of uremic dyslipoproteinemia—relation to renal function and dialysis,” Nephron, vol. 57, no. 4, pp. 401–410, 1991. View at Google Scholar · View at Scopus
  18. P. Alaupovic, P. O. Attman, C. Knight-Gibson, H. Mulec, L. Weiss, and O. Samuelsson, “Effect of fluvastatin on apolipoprotein-defined lipoprotein subclasses in patients with chronic renal insufficiency,” Kidney International, vol. 69, no. 10, pp. 1865–1871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Otvos, “Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy,” Clinical Cardiology, vol. 22, no. 6, pp. II21–II27, 1999. View at Google Scholar · View at Scopus
  20. M. Aurell, “Accurate and feasible measurements of GFR—is the iohexol clearance the answer?” Nephrology Dialysis Transplantation, vol. 9, no. 9, pp. 1222–1224, 1994. View at Google Scholar · View at Scopus
  21. H. Schuster, B. Fagerberg, S. Edwards et al., “Tesaglitazar, a dual peroxisome proliferator-activated receptor α/γ agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance,” Atherosclerosis, vol. 197, no. 1, pp. 355–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Samuelsson, H. Mulec, C. Knight-Gibson et al., “Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency,” Nephrology Dialysis Transplantation, vol. 12, no. 9, pp. 1908–1915, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Murdoch and W. C. Breckenridge, “Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL,” Atherosclerosis, vol. 118, no. 2, pp. 193–212, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Alaupovic, P. Blackett, W. Wang, and E. Lee, “Characterization of the metabolic syndrome by apolipoproteins in the Oklahoma Cherokee,” Journal of the Cardiometabolic Syndrome, vol. 3, no. 4, pp. 193–199, 2008. View at Google Scholar · View at Scopus
  25. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Carrero and P. Stenvinkel, “Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 1, pp. S49–S55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Laakso, “Lipids in type 2 diabetes,” Seminars in Vascular Medicine, vol. 2, no. 1, pp. 59–66, 2002. View at Google Scholar
  28. G. Walldius, I. Jungner, I. Holme, A. H. Aastveit, W. Kolar, and E. Steiner, “High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study,” The Lancet, vol. 358, no. 9298, pp. 2026–2033, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. P. Kastelein, W. A. Van Der Steeg, I. Holme et al., “Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment,” Circulation, vol. 117, no. 23, pp. 3002–3009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. F. M. Sacks, P. Alaupovic, L. A. Moye et al., “VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial,” Circulation, vol. 102, no. 16, pp. 1886–1892, 2000. View at Google Scholar · View at Scopus
  31. P. G. Scheffer, T. Teerlink, J. M. Dekker et al., “Increased plasma apolipoprotein C-III concentration independently predicts cardiovascular mortality: the Hoorn study,” Clinical Chemistry, vol. 54, no. 8, pp. 1325–1330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Chan, M. M. Chen, E. M. M. Ooi, and G. F. Watts, “An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor?” International Journal of Clinical Practice, vol. 62, no. 5, pp. 799–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kawakami and M. Yoshida, “Apolipoprotein C-III links dyslipidemeia with atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 16, pp. 6–11, 2009. View at Google Scholar