Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2013, Article ID 582809, 16 pages
http://dx.doi.org/10.1155/2013/582809
Research Article

Neuroprotective Properties of a Novel Non-Thiazoledinedione Partial PPAR-γ Agonist against MPTP

1Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
2Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
3Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
4Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
5School of Pharmacy, 777 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53705, USA
6Department of Medical Physics, 1111 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53705, USA

Received 20 April 2013; Revised 24 July 2013; Accepted 25 July 2013

Academic Editor: Paul Drew

Copyright © 2013 Christine R. Swanson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tansey, M. McCoy, and T. Frank-Cannon, “Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention,” Experimental Neurology, vol. 208, no. 1, pp. 1–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Google Scholar · View at Scopus
  4. D. A. Loeffler, A. J. DeMaggio, P. L. Juneau, M. K. Havaich, and P. A. LeWitt, “Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation,” Clinical Neuropharmacology, vol. 17, no. 4, pp. 370–379, 1994. View at Google Scholar · View at Scopus
  5. M. J. Zigmond, T. G. Hastings, and R. G. Perez, “Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity?” Parkinsonism and Related Disorders, vol. 8, no. 6, pp. 389–393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zecca, F. A. Zucca, H. Wilms, and D. Sulzer, “Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics,” Trends in Neurosciences, vol. 26, no. 11, pp. 578–580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Zecca, M. B. H. Youdim, P. Riederer, J. R. Connor, and R. R. Crichton, “Iron, brain ageing and neurodegenerative disorders,” Nature Reviews Neuroscience, vol. 5, no. 11, pp. 863–873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Wu, V. Jackson-Lewis, M. Vila et al., “Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1763–1771, 2002. View at Google Scholar · View at Scopus
  10. D. L. Feinstein, E. Galea, V. Gavrilyuk et al., “Peroxisome proliferator-activated receptor-γ agonists prevent experimental autoimmune encephalomyelitis,” Annals of Neurology, vol. 51, no. 6, pp. 694–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Park, J. H. Yi, G. Miranpuri et al., “Thiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 3, pp. 1002–1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. K. Phulwani, D. L. Feinstein, V. Gavrilyuk, C. Akar, and T. Kielian, “15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone modulate Staphylococcus aureus-dependent astrocyte activation primarily through a PPAR-γ-independent pathway,” Journal of Neurochemistry, vol. 99, no. 5, pp. 1389–1402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Clark and D. K. Simon, “Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in parkinson's disease,” Antioxidants and Redox Signaling, vol. 11, no. 3, pp. 509–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Kim, K. G. Park, E. K. Yoo et al., “Effects of PGC-1α on TNF-α-induced MCP-1 and VCAM-1 expression and NF-κB activation in human aortic smooth muscle and endothelial cells,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 301–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Schintu, L. Frau, M. Ibba et al., “PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson's disease,” European Journal of Neuroscience, vol. 29, no. 5, pp. 954–963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Dehmer, M. T. Heneka, M. Sastre, J. Dichgans, and J. B. Schulz, “Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with IκBα induction and block of NFκB and iNOS activation,” Journal of Neurochemistry, vol. 88, no. 2, pp. 494–501, 2004. View at Google Scholar · View at Scopus
  17. T. Breidert, J. Callebert, M. T. Heneka, G. Landreth, J. M. Launay, and E. C. Hirsch, “Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson's disease,” Journal of Neurochemistry, vol. 82, no. 3, pp. 615–624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. Swanson, V. Joers, V. Bondarenko et al., “The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys,” Journal of Neuroinflammation, vol. 8, article 91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. P. Quinn, B. Crook, M. E. Hows et al., “The PPARγ agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B,” British Journal of Pharmacology, vol. 154, no. 1, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Y. Park, I. J. Cho, and S. G. Kim, “Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid X receptor heterodimer,” Cancer Research, vol. 64, no. 10, pp. 3701–3713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. K. Loke, C. S. Kwok, and S. Singh, “Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies,” BMJ, vol. 342, article d1309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Gerrits, M. Bhattacharya, S. Manthena, R. Baran, A. Perez, and S. Kupfer, “A comparison of pioglitazone and rosiglitazone for hospitalization for acute myocardial infarction in type 2 diabetes,” Pharmacoepidemiology and Drug Safety, vol. 16, no. 10, pp. 1065–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Nissen, “Perspective: effect of rosiglitazone on cardiovascular outcomes,” Current Cardiology Reports, vol. 9, no. 5, pp. 343–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Lincoff, K. Wolski, S. J. Nicholls, and S. E. Nissen, “Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1180–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Reifel-Miller, K. Otto, E. Hawkins et al., “A peroxisome proliferator-activated receptor α/γ dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia,” Molecular Endocrinology, vol. 19, no. 6, pp. 1593–1605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Esposito, D. Impellizzeri, E. Mazzon, I. Paterniti, and S. Cuzzocrea, “Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson's disease,” PLoS ONE, vol. 7, no. 8, Article ID e41880, 2012. View at Google Scholar
  27. D. A. Johnson, G. K. Andrews, W. Xu, and J. A. Johnson, “Activation of the antioxidant response element in primary cortical neuronal cultures derived from transgenic reporter mice,” Journal of Neurochemistry, vol. 81, no. 6, pp. 1233–1241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Emborg, J. Moirano, J. Raschke et al., “Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF,” Neurobiology of Disease, vol. 36, no. 2, pp. 303–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. C. Baquet, D. Williams, J. Brody, and R. J. Smeyne, “A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse,” Neuroscience, vol. 161, no. 4, pp. 1082–1090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Schmitz and P. R. Hof, “Design-based stereology in neuroscience,” Neuroscience, vol. 130, no. 4, pp. 813–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Emborg, S. Y. Ma, E. J. Mufson et al., “Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys,” Journal of Comparative Neurology, vol. 401, no. 2, pp. 253–265, 1998. View at Publisher · View at Google Scholar
  32. M. J. West, L. Slomianka, and H. J. Gundersen, “Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator,” Anatomical Record, vol. 231, no. 4, pp. 482–497, 1991. View at Google Scholar · View at Scopus
  33. M. R. Vargas, D. A. Johnson, D. W. Sirkis, A. Messing, and J. A. Johnson, “Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 28, no. 50, pp. 13574–13581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Jackson-Lewis and S. Przedborski, “Protocol for the MPTP mouse model of Parkinson's disease,” Nature Protocols, vol. 2, no. 1, pp. 141–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Jackson-Lewis, M. Jakowec, R. E. Burke, and S. Przedborski, “Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Neurodegeneration, vol. 4, no. 3, pp. 257–269, 1995. View at Google Scholar · View at Scopus
  36. N. A. Tatton and S. J. Kish, “In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal Deoxynucleotidyl transferase labelling and acridine orange staining,” Neuroscience, vol. 77, no. 4, pp. 1037–1048, 1997. View at Google Scholar · View at Scopus
  37. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. E. Emborg, “Evaluation of animal models of Parkinson's disease for neuroprotective strategies,” Journal of Neuroscience Methods, vol. 139, no. 2, pp. 121–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Du, Z. Ma, S. Lin et al., “Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14669–14674, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. N. Joyce, C. Woolsey, H. Ryoo, S. Borwege, and D. Hagner, “Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor,” BMC Biology, vol. 2, article 22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. E. Heikkila, L. Manzino, F. S. Cabbat, and R. C. Duvoisin, “Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors,” Nature, vol. 311, no. 5985, pp. 467–469, 1984. View at Google Scholar · View at Scopus
  42. H. Y. Cho, W. Gladwell, X. Wang et al., “Nrf2-regulated PPARγ expression is critical to protection against acute lung injury in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 2, pp. 170–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Gong, D. Stewart, B. Hu et al., “Activation of the mouse heme oxygenase-1 gene by 15-Deoxy-Δ(12,14)-prostaglandin J(2) is mediated by the stress response elements and transcription factor Nrf2,” Antioxidants and Redox Signaling, vol. 4, no. 2, pp. 249–257, 2002. View at Google Scholar · View at Scopus
  44. A. R. Carta, L. Frau, A. Pisanu, J. Wardas, S. Spiga, and E. Carboni, “Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model,” Neuroscience, vol. 194, pp. 250–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Hunter, D. Y. Choi, S. A. Ross, and G. Bing, “Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats,” Neuroscience Letters, vol. 432, no. 3, pp. 198–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Walsh and R. Jefferis, “Post-translational modifications in the context of therapeutic proteins,” Nature Biotechnology, vol. 24, no. 10, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Dana, D. M. Fathallah, and M. A. Arnaout, “Expression of a soluble and functional form of the human β2 integrin CD11b/CD18,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3106–3110, 1991. View at Google Scholar · View at Scopus
  48. S. M. Abaraviciene, I. Lundquist, and A. Salehi, “Rosiglitazone counteracts palmitate-induced β-cell dysfunction by suppression of MAP kinase, inducible nitric oxide synthase and caspase 3 activities,” Cellular and Molecular Life Sciences, vol. 65, no. 14, pp. 2256–2265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Kiaei, K. Kipiani, J. Chen, N. Y. Calingasan, and M. F. Beal, “Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 191, no. 2, pp. 331–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Moreno, S. Farioli-vecchioli, and M. P. Cerù, “Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS,” Neuroscience, vol. 123, no. 1, pp. 131–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. T. E. Cullingford, K. Bhakoo, S. Peuchen, C. T. Dolphin, R. Patel, and J. B. Clark, “Distribution of mRNAs encoding the peroxisome proliferator-activated receptor α, β, and γ and the retinoid X receptor α, β, and γ in rat central nervous system,” Journal of Neurochemistry, vol. 70, no. 4, pp. 1366–1375, 1998. View at Google Scholar · View at Scopus
  52. W. J. Lee, M. Kim, H. S. Park et al., “AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1,” Biochemical and Biophysical Research Communications, vol. 340, no. 1, pp. 291–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure,” Current Opinion in Lipidology, vol. 20, no. 2, pp. 98–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. D. G. Hardie, “AMPK: a key regulator of energy balance in the single cell and the whole organism,” International Journal of Obesity, vol. 32, no. 4, pp. S7–S12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Bromage, P. Tempst, B. M. Spiegelman et al., “Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK,” Genes and Development, vol. 18, no. 3, pp. 278–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Burgermeister and R. Seger, “MAPK kinases as nucleo-cytoplasmic shuttles for PPARγ,” Cell Cycle, vol. 6, no. 13, pp. 1539–1548, 2007. View at Google Scholar · View at Scopus
  57. J. H. Shin, H. S. Ko, H. Kang et al., “PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease,” Cell, vol. 144, no. 5, pp. 689–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. H. L. Martin, R. B. Mounsey, S. Mustafa, K. Sathe, and P. Teismann, “Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson's disease,” Experimental Neurology, vol. 235, no. 2, pp. 528–538, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. J. St-Pierre, S. Drori, M. Uldry et al., “Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators,” Cell, vol. 127, no. 2, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Ciron, S. Lengacher, J. Dusonchet, P. Aebischer, and B. L. Schneider, “Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function,” Human Molecular Genetics, vol. 21, no. 8, Article ID ddr618, pp. 1861–1876, 2012. View at Google Scholar · View at Scopus
  61. D. L. Feinstein, A. Spagnolo, C. Akar et al., “Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key?” Biochemical Pharmacology, vol. 70, no. 2, pp. 177–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Giri, R. Rattan, A. K. Singh, and I. Singh, “The 15-Deoxy-Δ12,14-prostaglandin J2 inhibits the inflammatory response in primary rat astrocytes via down-regulating multiple steps in phosphatidylinositol 3-kinase-akt-NF-κB-p300 pathway independent of peroxisome proliferator-activated receptor γ,” Journal of Immunology, vol. 173, no. 8, pp. 5196–5208, 2004. View at Google Scholar · View at Scopus
  63. S. Boyault, M. A. Simonin, A. Bianchi et al., “15-Deoxy-Δ12,14-PGJ2, but not troglitazone, modulates IL-1β effects in human chondrocytes by inhibiting NF-κB and AP-1 activation pathways,” FEBS Letters, vol. 501, no. 1, pp. 24–30, 2001. View at Google Scholar · View at Scopus
  64. P. A. Ruiz, S. C. Kim, R. B. Sartor, and D. Haller, “15-Deoxy-Δ12,14-prostaglandin J2-mediated ERK signaling inhibits gram-negative bacteria-induced RelA phosphorylation and interleukin-6 gene expression in intestinal epithelial cells through modulation of protein phosphatase 2A activity,” The Journal of Biological Chemistry, vol. 279, no. 34, pp. 36103–36111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Eligini, C. Banfi, M. Brambilla et al., “15-Deoxy-Δ12,14-Prostaglandin J2 inhibits tissue factor expression in human macrophages and endothelial cells: evidence for ERK1/2 signaling pathway blockade,” Thrombosis and Haemostasis, vol. 88, no. 3, pp. 524–532, 2002. View at Google Scholar · View at Scopus
  66. H. Sawano, M. Haneda, T. Sugimoto, K. Inoki, D. Koya, and R. Kikkawa, “15-Deoxy-δ12,14-prostaglandin J2 inhibits IL-1β-induced cyclooxygenase-2 expression in mesangial cells,” Kidney International, vol. 61, no. 6, pp. 1957–1967, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Garrido-Gil, B. Joglar, A. I. Rodriguez-Perez, M. J. Guerra, and J. L. Labandeira-Garcia, “Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease,” Journal of Neuroinflammation, vol. 9, article 38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Hosono, H. Mizuguchi, K. Katayama et al., “RNA interference of PPARγ using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells,” Gene, vol. 348, no. 1-2, pp. 157–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Neumann, A. Weill, P. Ricordeau, J. P. Fagot, F. Alla, and H. Allemand, “Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study,” Diabetologia, no. 7, pp. 1953–1962, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Lewis, A. Ferrara, T. Peng et al., “Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study,” Diabetes Care, vol. 34, no. 4, pp. 916–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Mitka, “Panel recommends easing restrictions on rosiglitazone despite concerns about cardiovascular safety,” JAMA, vol. 310, no. 3, pp. 246–247, 2013. View at Publisher · View at Google Scholar