Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2016, Article ID 2756781, 9 pages
http://dx.doi.org/10.1155/2016/2756781
Research Article

Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages

1Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Université de Lille, 59000 Lille, France
2CHU, CNRS, Inserm, IRCAN, Université Côte d’Azur, Nice, France
3Department of Cardiology, RWTH Aachen University, Aachen, Germany

Received 14 September 2016; Accepted 28 November 2016

Academic Editor: Nanping Wang

Copyright © 2016 G. Chinetti-Gbaguidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Chinetti-Gbaguidi, S. Colin, and B. Staels, “Macrophage subsets in atherosclerosis,” Nature Reviews Cardiology, vol. 12, no. 1, pp. 10–17, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Libby, M. Aikawa, and U. Schönbeck, “Cholesterol and atherosclerosis,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, vol. 1529, no. 1–3, pp. 299–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Tabas, “Macrophage death and defective inflammation resolution in atherosclerosis,” Nature Reviews Immunology, vol. 10, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Petit, P. Lesnik, C. Dachet, M. Moreau, and M. J. Chapman, “Tissue factor pathway inhibitor is expressed by human monocyte—derived macrophages: relationship to tissue factor induction by cholesterol and oxidized LDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 2, pp. 309–315, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Crawley, F. Lupu, A. D. Westmuckett, N. J. Severs, V. V. Kakkar, and C. Lupu, “Expression, localization, and activity of tissue factor pathway inhibitor in normal and atherosclerotic human vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 5, pp. 1362–1373, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. G. Mann, C. Van't Veer, K. Cawthern, and S. Butenas, “The role of the tissue factor pathway in initiation of coagulation,” Blood Coagulation and Fibrinolysis, vol. 9, no. 1, pp. S3–S7, 1998. View at Google Scholar · View at Scopus
  8. B. A. Lwaleed and P. S. Bass, “Tissue factor pathway inhibitor: structure, biology and involvement in disease,” Journal of Pathology, vol. 208, no. 3, pp. 327–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Mackman, “Role of tissue factor in hemostasis, thrombosis, and vascular development,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 6, pp. 1015–1022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Mueller, R. A. Reisfeld, T. S. Edgington, and W. Ruf, “Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 24, pp. 11832–11836, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. Yu, L. May, V. Lhotak et al., “Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis,” Blood, vol. 105, no. 4, pp. 1734–1741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wang, E. Gjernes, and H. Prydz, “Factor VIIa induces tissue factor-dependent up-regulation of interleukin-8 in a human keratinocyte line,” Journal of Biological Chemistry, vol. 277, no. 26, pp. 23620–23626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Demetz, I. Seitz, A. Stein et al., “Tissue Factor-Factor VIIa complex induces cytokine expression in coronary artery smooth muscle cells,” Atherosclerosis, vol. 212, no. 2, pp. 466–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Rigamonti, G. Chinetti-Gbaguidi, and B. Staels, “Regulation of macrophage functions by PPAR-α, PPAR-γ, and LXRs in mice and men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 6, pp. 1050–1059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Chinetti-Gbaguidi, M. Baron, M. A. Bouhlel et al., “Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways,” Circulation Research, vol. 108, no. 8, pp. 985–995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. P. Neve, D. Corseaux, G. Chinetti et al., “PPARα agonists inhibit tissue factor expression in human monocytes and macrophages,” Circulation, vol. 103, no. 2, pp. 207–212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Marx, N. Mackman, U. Schönbeck et al., “PPARα activators inhibit tissue factor expression and activity in human monocytes,” Circulation, vol. 103, no. 2, pp. 213–219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-B. Park, B.-K. Kim, Y.-W. Kwon et al., “Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion,” PLoS ONE, vol. 6, no. 11, Article ID e28327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Chinetti, S. Lestavel, V. Bocher et al., “PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway,” Nature Medicine, vol. 7, no. 1, pp. 53–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Bories, S. Colin, J. Vanhoutte et al., “Liver X receptor activation stimulates iron export in human alternative macrophages,” Circulation Research, vol. 113, no. 11, pp. 1196–1205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Balmforth, P. J. Grant, E. M. Scott et al., “Inter-subject differences in constitutive expression levels of the clock gene in man,” Diabetes and Vascular Disease Research, vol. 4, no. 1, pp. 39–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Lupu, E. Poulsen, S. Roquefeuil, A. D. Westmuckett, V. V. Kakkar, and F. Lupu, “Cellular effects of heparin on the production and release of tissue factor pathway inhibitor in human endothelial cells in culture,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 9, pp. 2251–2262, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Rigamonti, C. Fontaine, B. Lefebvre et al., “Induction of CXCR2 receptor by peroxisome proliferator-activated receptor γ in human macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 932–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Chinetti-Gbaguidi, C. Copin, B. Derudas et al., “The coronary artery disease-associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ,” FEBS Letters, vol. 589, no. 4, pp. 461–466, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Chinetti-Gbaguidi, M. A. Bouhlel, C. Copin et al., “Peroxisome proliferator-activated receptor-γ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 3, pp. 677–685, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. W. Nicol, G. A. Helt, S. G. Blanchard Jr., A. Raja, and A. E. Loraine, “The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets,” Bioinformatics, vol. 25, no. 20, pp. 2730–2731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. S. Mikkelsen, Z. Xu, X. Zhang et al., “Comparative epigenomic analysis of murine and human adipogenesis,” Cell, vol. 143, no. 1, pp. 156–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Davies and A. Thomas, “Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death,” The New England Journal of Medicine, vol. 310, no. 18, pp. 1137–1140, 1984. View at Publisher · View at Google Scholar · View at Scopus
  29. H. H. Versteeg, M. P. Peppelenbosch, and C. A. Spek, “The pleiotropic effects of tissue factor: a possible role for factor VIIa-induced intracellular signalling?” Thrombosis and Haemostasis, vol. 86, no. 6, pp. 1353–1359, 2001. View at Google Scholar · View at Scopus
  30. Z.-C. Jia, Y.-L. Wan, J.-Q. Tang et al., “Tissue factor/activated factor VIIa induces matrix metalloproteinase-7 expression through activation of c-Fos via ERK1/2 and p38 MAPK signaling pathways in human colon cancer cell,” International Journal of Colorectal Disease, vol. 27, no. 4, pp. 437–445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Roma-Lavisse, M. Tagzirt, C. Zawadzki et al., “M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes,” Diabetes and Vascular Disease Research, vol. 12, no. 4, pp. 279–289, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Y. Cho, H. Miyoshi, S. Kuroda et al., “The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery,” Journal of Stroke and Cerebrovascular Diseases, vol. 22, no. 7, pp. 910–918, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Shaikh, J. Brittenden, R. Lahiri, P. A. J. Brown, F. Thies, and H. M. Wilson, “Macrophage subtypes in symptomatic carotid artery and femoral artery plaques,” European Journal of Vascular and Endovascular Surgery, vol. 44, no. 5, pp. 491–497, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Golledge, S. Mangan, and P. Clancy, “Effects of peroxisome proliferator-activated receptor ligands in modulating tissue factor and tissue factor pathway inhibitor in acutely symptomatic carotid atheromas,” Stroke, vol. 38, no. 5, pp. 1501–1508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Orasanu, O. Ziouzenkova, P. R. Devchand et al., “The peroxisome proliferator-activated receptor-γ agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-α-dependent manner in vitro and in vivo in mice,” Journal of the American College of Cardiology, vol. 52, no. 10, pp. 869–881, 2008. View at Publisher · View at Google Scholar · View at Scopus