Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2017 (2017), Article ID 7097450, 22 pages
https://doi.org/10.1155/2017/7097450
Research Article

2,4-Thiazolidinedione Treatment Improves the Innate Immune Response in Dairy Goats with Induced Subclinical Mastitis

1Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
2Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy

Correspondence should be addressed to Massimo Bionaz

Received 13 February 2017; Accepted 30 April 2017; Published 27 June 2017

Academic Editor: Stéphane Mandard

Copyright © 2017 Fernanda Rosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary Material

File S1. Results from the BLAST analysis using NCBI of the sequencing of the DNA isolated form the Strep. uberis used in the present experiment.

File S2. Tables S1 contains the features of primer-pairs used in the present experiment. Table S2 contains the sequence of the amplicon for each primer-pair used

Figure S1. Percentage phagocytosis in 100 μL whole blood obtained from two lactating goats using the recommended (1x reagent) or half (0.5x reagents) of amount of reagents using the Phagotest kit (Glycotope, Germany).

Figure S2. Schematic visualization of the steps to determine % phagocytosis in granulocytes (or PMN) and monocytes and differential from whole blood of goat using flow cytometer following the instructions of the Phagotest kit (Glycotope, Germany).

Figure S3. Transcript abundance of casein κ (CSN3), lactalbumin (LALBA), and mucin 1 (MUC1) in positively vs. negatively magnetically isolated mammary somatic cells using mucin 1 antibody. Reported are the values of RTqPCR data non-normalized and normalized using three internal control genes for mammary epithelial cells (see materials and methods)

Figure S4. Body weight measurements relative to Strept. uberis (M) or saline intramammary infusion (IMI) in goats receiving daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR).

Figure S5. Milk somatic cell count (#cells x 1,000/mL of milk) corrected by CTRL group at -8d relative to intramammary infusion (IMI) of Strep.Uberis (M) or saline during daily injection of 2,4-thiazolidinedione (TZD) or saline (CTR). Significant difference due to mastitis × time (M × T) and mastitis × TZD (M × Z) are denoted with red * and blue *, respectively.

Figure S6. Energy corrected milk in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR). Significant (P≤0.05) effects and interactions are indicated in the graph (mastitis = M, Time = T, TZD = Z).

Figure S7. Plasma concentration of urea and α-tocopherol in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR). Significant (P≤0.05) effects and interactions are indicated in the graph (mastitis = M, Time = T, TZD = Z).

Figure S8. Plasma concentration of insulin plus Quantitative Insulin Sensitivity Check Index (QUICKI) and the Revised QUICKI (RQUICKI) in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR). Significant (P≤0.05) effects and interactions are indicated in the graph (mastitis = M, Time = T, TZD = Z).

Figure S9. Plasma concentration of positive (ceruloplasmin) and negative (paraoxonase) acute phase reaction markers, total bilirubin as index of liver clearance, and total reactive oxygen metabolites (ROM) as index of oxidative stress in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR).

Figure S10. Pearson correlation between RNA Integrity Number (RIN) as calculated by Bioanalyzer and Ct values obtained by RTqPCR for all measured genes combining results from adipose and mammary epithelial cells. Reported in each graph are the value of the Pearson correlation coefficient r and its statistical significance.

Figure S11. Adipocytes area in sub-cutaneous adipose tissue in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR) at -1 and 7 day post-IMI. Upper panel is the result of the statistical analysis considering all interactions, including adipose area range. The lower panel represents the analysis of each individual adipose area range for all groups of goats with both time points. Significant (P≤0.05) effects and interactions are indicated in the graph (mastitis = M, Time = T, TZD = Z).

Figure S12. Diameter of adipocytes in sub-cutaneous adipose tissue in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR) at -1 (upper panel) and 7 (lower panel) day post-IMI. Significant (P≤0.05) effects are indicated in the graph (M = mastitis; Z = TZD) by*.

FigureS13. Adipocytes diameter in sub-cutaneous adipose tissue in goats receiving intramammary infusion (IMI) of Strept. uberis (M) or saline plus daily intrajugular injection of 2,4-thiazolidinedione (TZD) or saline (CTR) at -1 and 7 day post-IMI. Upper panel is the result of the statistical analysis considering all interactions, including adipose area range. The lower panel represents the analysis of each individual adipose area range for all groups of goats with both time points. Significant (P≤0.05) effects and interactions are indicated in the graph (mastitis = M, Time = T, TZD = Z).

  1. Supplementary Material