Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2017, Article ID 8187235, 15 pages
https://doi.org/10.1155/2017/8187235
Review Article

Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway

1ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
2Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
3Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
4Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK

Correspondence should be addressed to Daniele Fanale; ti.orebil@nadnaf

Received 20 October 2016; Accepted 19 December 2016; Published 15 January 2017

Academic Editor: Stéphane Mandard

Copyright © 2017 Laura La Paglia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Schupp and M. A. Lazar, “Endogenous ligands for nuclear receptors: digging deeper,” Journal of Biological Chemistry, vol. 285, no. 52, pp. 40409–40415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Sertznig, M. Seifert, W. Tilgen, and J. Reichrath, “Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer,” Journal of Cellular Physiology, vol. 212, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. R. Pyper, N. Viswakarma, S. Yu, and J. K. Reddy, “PPARalpha: energy combustion, hypolipidemia, inflammation and cancer,” Nuclear receptor signaling, vol. 8, article e002, 2010. View at Google Scholar · View at Scopus
  6. P. Delerive, C. Furman, E. Teissier, J.-C. Fruchart, P. Duriez, and B. Staels, “Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner,” FEBS Letters, vol. 471, no. 1, pp. 34–38, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. P. G. Attianese and B. Desvergne, “Integrative and systemic approaches for evaluating PPARbeta/delta (PPARD) function,” Nuclear Receptor Signaling, vol. 13, article e001, 2015. View at Publisher · View at Google Scholar
  8. M. Vázquez-Carrera, “Unraveling the effects of PPARβ/δ on insulin resistance and cardiovascular disease,” Trends in Endocrinology and Metabolism, vol. 27, no. 5, pp. 319–334, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. K.-D. Wagner and N. Wagner, “Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions,” Pharmacology and Therapeutics, vol. 125, no. 3, pp. 423–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Neels and P. A. Grimaldi, “Physiological functions of peroxisome proliferator-activated receptor β,” Physiological Reviews, vol. 94, no. 3, pp. 795–858, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Soccio, E. R. Chen, S. R. Rajapurkar et al., “Genetic variation determines PPARγ function and anti-diabetic drug response in vivo,” Cell, vol. 162, no. 1, pp. 33–44, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Aprile, M. R. Ambrosio, V. D'Esposito et al., “PPARG in human adipogenesis: differential contribution of canonical transcripts and dominant negative isoforms,” PPAR Research, vol. 2014, Article ID 537865, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-X. Wang, “PPARs: diverse regulators in energy metabolism and metabolic diseases,” Cell Research, vol. 20, no. 2, pp. 124–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Bermúdez, F. Finol, N. Parra et al., “PPAR-γ agonists and their role in type 2 diabetes mellitus management,” American Journal of Therapeutics, vol. 17, no. 3, pp. 274–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Derosa and P. Maffioli, “Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists on glycemic control, lipid profile and cardiovascular risk,” Current Molecular Pharmacology, vol. 5, no. 2, pp. 272–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Bensinger and P. Tontonoz, “Integration of metabolism and inflammation by lipid-activated nuclear receptors,” Nature, vol. 454, no. 7203, pp. 470–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Terrasi, V. Bazan, S. Caruso et al., “Effects of PPARγ agonists on the expression of leptin and vascular endothelial growth factor in breast cancer cells,” Journal of Cellular Physiology, vol. 228, no. 6, pp. 1368–1374, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. B. P. Kota, T. H.-W. Huang, and B. D. Roufogalis, “An overview on biological mechanisms of PPARs,” Pharmacological Research, vol. 51, no. 2, pp. 85–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Mello, S. Polvani, and A. Galli, “Peroxisome proliferator-activated receptor and retinoic X receptor in alcoholic liver disease,” PPAR Research, vol. 2009, Article ID 748174, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, “Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors,” Nature, vol. 358, no. 6389, pp. 771–774, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Viswakarma, Y. Jia, L. Bai et al., “Coactivators in PPAR-regulated gene expression,” PPAR Research, vol. 2010, Article ID 250126, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Martínez-Redondo, A. T. Pettersson, and J. L. Ruas, “The hitchhiker's guide to PGC-1α isoform structure and biological functions,” Diabetologia, vol. 58, no. 9, pp. 1969–1977, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. F. A. Monsalve, R. D. Pyarasani, F. Delgado-Lopez, and R. Moore-Carrasco, “Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases,” Mediators of Inflammation, vol. 2013, Article ID 549627, 18 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kersten, S. Mandard, N. S. Tan et al., “Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene,” Journal of Biological Chemistry, vol. 275, no. 37, pp. 28488–28493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Kim, H.-G. Kim, H. Kim et al., “Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis,” Biochemical Journal, vol. 346, no. 3, pp. 603–610, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Cliff Yoon, T. W. Chickering, E. D. Rosen et al., “Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation,” Molecular and Cellular Biology, vol. 20, no. 14, pp. 5343–5349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Ito, Y. Oike, K. Yasunaga et al., “Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4,” Cancer Research, vol. 63, no. 20, pp. 6651–6657, 2003. View at Google Scholar · View at Scopus
  28. I. Kim, H. J. Kwak, J. E. Ahn et al., “Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3,” FEBS Letters, vol. 443, no. 3, pp. 353–356, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Santulli, “Angiopoietin-like proteins: a comprehensive look,” Frontiers in Endocrinology, vol. 5, article 4, 2014. View at Google Scholar · View at Scopus
  30. G. Ren, J. Y. Kim, and C. M. Smas, “Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism,” American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 3, pp. E334–E351, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Zhang, “Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels,” Biochemical and Biophysical Research Communications, vol. 424, no. 4, pp. 786–792, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Quagliarini, Y. Wang, J. Kozlitina et al., “Atypical angiopoietin-like protein that regulates ANGPTL3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 48, pp. 19751–19756, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Yi, J. S. Park, and D. A. Melton, “Betatrophin: a hormone that controls pancreatic beta cell proliferation,” Cell, vol. 153, no. 4, pp. 747–758, 2013. View at Google Scholar
  34. K. A. Gray, B. Yates, R. L. Seal, M. W. Wright, and E. A. Bruford, “Genenames.org: the HGNC resources in 2015,” Nucleic Acids Research, vol. 43, no. 1, pp. D1079–D1085, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Oike, K. Yasunaga, and T. Suda, “Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis,” International Journal of Hematology, vol. 80, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Hato, M. Tabata, and Y. Oike, “The role of angiopoietin-like proteins in angiogenesis and metabolism,” Trends in Cardiovascular Medicine, vol. 18, no. 1, pp. 6–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Kim, S.-O. Moon, K. N. Koh et al., “Molecular cloning, expression, and characterization of angiopoietin- related protein. Angiopoietin-related protein induces endothelial cell sprouting,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26523–26528, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Katoh and M. Katoh, “Comparative integromics on Angiopoietin family members,” International Journal of Molecular Medicine, vol. 17, no. 6, pp. 1145–1149, 2006. View at Google Scholar · View at Scopus
  39. Y. Oike, K. Yasunaga, Y. Ito et al., “Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9494–9499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Oike, Y. Ito, H. Maekawa et al., “Angiopoietin-related growth factor (AGF) promotes angiogenesis,” Blood, vol. 103, no. 10, pp. 3760–3765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ono, T. Shimizugawa, M. Shimamura et al., “Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 41804–41809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Shimamura, M. Matsuda, H. Yasumo et al., “Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 366–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Wang, K. S. L. Lam, J. B. B. Lam et al., “Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice,” Molecular Endocrinology, vol. 21, no. 4, pp. 972–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Xu, M. C. Lam, K. W. Chan et al., “Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 6086–6091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Oike, M. Akao, K. Yasunaga et al., “Angiopoietin-related growth factor antagonizes obesity and insulin resistance,” Nature Medicine, vol. 11, no. 4, pp. 400–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Ge, J.-Y. Cha, H. Gopal et al., “Differential regulation and properties of angiopoietin-like proteins 3 and 4,” Journal of Lipid Research, vol. 46, no. 7, pp. 1484–1490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. E.-C. Lee, U. Desai, G. Gololobov et al., “Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL),” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13735–13745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D.-M. Lai, Y.-K. Tu, Y.-H. Hsieh et al., “Angiopoietin-like protein 1 expression is related to intermuscular connective tissue and cartilage development,” Developmental Dynamics, vol. 236, no. 9, pp. 2643–2652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Thorin-Trescases and E. Thorin, “Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties,” Expert Reviews in Molecular Medicine, vol. 16, article e17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Arca, I. Minicocci, and M. Maranghi, “The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism,” Current Opinion in Lipidology, vol. 24, no. 4, pp. 313–320, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Camenisch, M. T. Pisabarro, D. Sherman et al., “ANGPTL3 stimulates endothelial cell adhesion and migration via integrin αvβ3 and induces blood vessel formation in vivo,” Journal of Biological Chemistry, vol. 277, no. 19, pp. 17281–17290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Dijk and S. Kersten, “Regulation of lipoprotein lipase by Angptl4,” Trends in Endocrinology and Metabolism, vol. 25, no. 3, pp. 146–155, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Oike, M. Akao, Y. Kubota, and T. Suda, “Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy,” Trends in Molecular Medicine, vol. 11, no. 10, pp. 473–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. J. Tan, Z. Teo, M. K. Sng, P. Zhu, and N. S. Tan, “Emerging roles of angiopoietin-like 4 in human cancer,” Molecular Cancer Research, vol. 10, no. 6, pp. 677–688, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Y.-H. Tseng, Y.-H. Yeh, W.-J. Chen, and K.-H. Lin, “Emerging regulation and function of betatrophin,” International Journal of Molecular Sciences, vol. 15, no. 12, pp. 23640–23657, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Kersten, L. Lichtenstein, E. Steenbergen et al., “Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 969–974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Zeng, J. Dai, K. Ying et al., “Identification of a novel human angiopoietin-like gene expressed mainly in heart,” Journal of Human Genetics, vol. 48, no. 3, pp. 159–162, 2003. View at Google Scholar · View at Scopus
  58. T. Kadomatsu, M. Tabata, and Y. Oike, “Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases,” FEBS Journal, vol. 278, no. 4, pp. 559–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Toyono, T. Usui, S. Yokoo et al., “Angiopoietin-like 7 is an anti-angiogenic protein required to prevent vascularization of the cornea,” PLoS ONE, vol. 10, no. 1, Article ID e0116838., 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Grootaert, T. Van De Wiele, W. Verstraete, M. Bracke, and B. Vanhoecke, “Angiopoietin-like protein 4: health effects, modulating agents and structure-function relationships,” Expert Review of Proteomics, vol. 9, no. 2, pp. 181–199, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Mandard, F. Zandbergen, N. S. Tan et al., “The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34411–34420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Ge, G. Yang, X. Yu, T. Pourbahrami, and C. Li, “Oligomerization state-dependent hyperlipidemic effect of angiopoietin-like protein 4,” Journal of Lipid Research, vol. 45, no. 11, pp. 2071–2079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Yin, S. Romeo, S. Chang, N. V. Grishin, H. H. Hobbs, and J. C. Cohen, “Genetic variation in ANGPTL4 provides insights into protein processing and function,” Journal of Biological Chemistry, vol. 284, no. 19, pp. 13213–13222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Sukonina, A. Lookene, T. Olivecrona, and G. Olivecrona, “Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17450–17455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Ge, G. Yang, L. Huang, D. L. Motola, T. Pourbahrami, and C. Li, “Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4,” Journal of Biological Chemistry, vol. 279, no. 3, pp. 2038–2045, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. M.-H. Yau, Y. Wang, K. S. L. Lam, J. Zhang, D. Wu, and A. Xu, “A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 11942–11952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Lei, F. Shi, D. Basu et al., “Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity,” The Journal of Biological Chemistry, vol. 286, no. 18, pp. 15747–15756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Cazes, A. Galaup, C. Chomel et al., “Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton,” Circulation Research, vol. 99, no. 11, pp. 1207–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Y. Goh, M. Pal, H. C. Chong et al., “Angiopoietin-like 4 interacts with integrins β1 and β5 to modulate keratinocyte migration,” American Journal of Pathology, vol. 177, no. 6, pp. 2791–2803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Y. Goh, M. Pal, H. C. Chong et al., “Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32999–33009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Inoue, T. Kohro, T. Tanaka et al., “Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements,” Genome Biology, vol. 15, no. 4, article no. R63, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Wiesner, B. A. Morash, E. Ur, and M. Wilkinson, “Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus,” Journal of Endocrinology, vol. 180, no. 3, pp. R1–R6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Lichtenstein, J. F. P. Berbée, S. J. van Dijk et al., “Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2420–2427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Cangemi, D. Fanale, G. Rinaldi et al., “Dietary restriction: could it be considered as speed bump on tumor progression road?” Tumor Biology, vol. 37, no. 6, pp. 7109–7118, 2016. View at Publisher · View at Google Scholar · View at Scopus
  75. P. González-Muniesa, C. De Oliveira, F. Pérez De Heredia, M. P. Thompson, and P. Trayhurn, “Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes,” Journal of Nutrigenetics and Nutrigenomics, vol. 4, no. 3, pp. 146–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Baranowski, S. Kralisch, A. Bachmann et al., “Serum levels of the adipokine fasting-induced adipose factor/angiopoietin-like protein 4 depend on renal function,” Hormone and Metabolic Research, vol. 43, no. 2, pp. 117–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. E. M. van Leeuwen, A. Sabo, J. C. Bis et al., “Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels,” Journal of Medical Genetics, vol. 53, no. 7, pp. 441–449, 2016. View at Publisher · View at Google Scholar · View at Scopus
  78. S. K. Koliwad, T. Kuo, L. E. Shipp et al., “Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism,” Journal of Biological Chemistry, vol. 284, no. 38, pp. 25593–25601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Kaddatz, T. Adhikary, F. Finkernagel, W. Meissner, S. Müller-Brüsselbach, and R. Müller, “Transcriptional profiling identifies functional interactions of TGFβ and PPARβ/δ signaling: synergistic induction of ANGPTL4 transcription,” Journal of Biological Chemistry, vol. 285, no. 38, pp. 29469–29479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Zhu, Y. Y. Goh, H. F. A. Chin, S. Kersten, and N. S. Tan, “Angiopoietin-like 4: a decade of research,” Bioscience Reports, vol. 32, no. 3, pp. 211–219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Mandard, F. Zandbergen, E. van Straten et al., “The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity,” The Journal of Biological Chemistry, vol. 281, no. 2, pp. 934–944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. T. Jonker, J. W. A. Smit, S. Hammer et al., “Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes,” The American Journal of Clinical Nutrition, vol. 97, no. 2, pp. 255–260, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. M. R. Robciuc, P. Skrobuk, A. Anisimov et al., “Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes,” PLoS ONE, vol. 7, no. 10, Article ID e46212, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Dijk, A. P. Beigneux, M. Larsson, A. Bensadoun, S. G. Young, and S. Kersten, “Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes,” Journal of Lipid Research, vol. 57, no. 9, pp. 1670–1683, 2016. View at Publisher · View at Google Scholar
  85. E. Makoveichuk, E. Vorrsjö, T. Olivecrona, and G. Olivecrona, “Inactivation of lipoprotein lipase in 3T3-L1 adipocytes by angiopoietin-like protein 4 requires that both proteins have reached the cell surface,” Biochemical and Biophysical Research Communications, vol. 441, no. 4, pp. 941–946, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Chi, S. K. Shetty, H. W. Shows, A. J. Hjelmaas, E. K. Malcolm, and B. S. J. Davies, “Angiopoietin-like 4 modifies the interactions between lipoprotein lipase and its endothelial cell transporter GPIHBP1,” Journal of Biological Chemistry, vol. 290, no. 19, pp. 11865–11877, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. H.-K. Kim, B.-S. Youn, M.-S. Shin et al., “Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight,” Diabetes, vol. 59, no. 11, pp. 2772–2780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. R. Robciuc, J. Naukkarinen, A. Ortega-Alonso et al., “Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins,” Journal of Lipid Research, vol. 52, no. 8, pp. 1575–1582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Alex, K. Lange, T. Amolo et al., “Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ,” Molecular and Cellular Biology, vol. 33, no. 7, pp. 1303–1316, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Staiger, C. Haas, J. Machann et al., “Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-δ and is of metabolic relevance in humans,” Diabetes, vol. 58, no. 3, pp. 579–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Mattijssen, S. Alex, H. J. Swarts, A. K. Groen, E. M. van Schothorst, and S. Kersten, “Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion,” Molecular Metabolism, vol. 3, no. 2, pp. 135–144, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Koishi, Y. Ando, M. Ono et al., “Angptl3 regulates lipid metabolism in mice,” Nature Genetics, vol. 30, no. 2, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Wang, F. Quagliarini, V. Gusarova et al., “Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 40, pp. 16109–16114, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Zhang and A. B. Abou-Samra, “Emerging roles of Lipasin as a critical lipid regulator,” Biochemical and Biophysical Research Communications, vol. 432, no. 3, pp. 401–405, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Zhang, “The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking,” Open Biology, vol. 6, no. 4, Article ID 150272, 2016. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Dijk and S. Kersten, “Regulation of lipid metabolism by angiopoietin-like proteins,” Current Opinion in Lipidology, vol. 27, no. 3, pp. 249–256, 2016. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Ruge, V. Sukonina, O. Kroupa et al., “Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus,” Metabolism: Clinical and Experimental, vol. 61, no. 5, pp. 652–660, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Wang, L. Liu, L. Wei et al., “Angiopoietin-like protein 4 improves glucose tolerance and insulin resistance but induces liver steatosis in high-fat-diet mice,” Molecular Medicine Reports, vol. 14, no. 4, pp. 3293–3300, 2016. View at Publisher · View at Google Scholar
  99. L. C. Clement, C. Macé, C. Avila-Casado, J. A. Joles, S. Kersten, and S. S. Chugh, “Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome,” Nature Medicine, vol. 20, no. 1, pp. 37–46, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Lu, S. Wu, Y. G. Zhang et al., “Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer,” Neoplasia, vol. 18, no. 5, pp. 307–316, 2016. View at Publisher · View at Google Scholar
  101. S. Sivaprakasam, A. Gurav, A. V. Paschall et al., “An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis,” Oncogenesis, vol. 5, no. 6, article e238, 2016. View at Publisher · View at Google Scholar
  102. Y. Miki, Y. Kidoguchi, M. Sato et al., “Dual roles of group IID phospholipase A2 in inflammation and cancer,” Journal of Biological Chemistry, vol. 291, no. 30, pp. 15588–15601, 2016. View at Publisher · View at Google Scholar · View at Scopus
  103. T. Nakayama, H. Hirakawa, K. Shibata, K. Abe, T. Nagayasu, and T. Taguchi, “Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion,” Oncology Reports, vol. 24, no. 3, pp. 599–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Nakayama, H. Hirakawa, K. Shibata et al., “Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis,” Oncology Reports, vol. 25, no. 4, pp. 929–935, 2011. View at Google Scholar
  105. K. Shibata, T. Nakayama, H. Hirakawa, S. Hidaka, and T. Nagayasu, “Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma,” Journal of Clinical Pathology, vol. 63, no. 12, pp. 1054–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Z. Wang, B. Han, Z. Zhang, J. Pan, and H. Xia, “Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma,” Biomarkers, vol. 15, no. 1, pp. 39–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Le Jan, C. Amy, A. Cazes et al., “Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma,” The American Journal of Pathology, vol. 162, no. 5, pp. 1521–1528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. X.-F. Huang, J. Han, X.-T. Hu, and C. He, “Mechanisms involved in biological behavior changes associated with Angptl4 expression in colon cancer cell lines,” Oncology Reports, vol. 27, no. 5, pp. 1541–1547, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Shengwei, X. Wenguang, W. Zhiyong et al., “Crosstalk between the HIF-1 and toll-like receptor/nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment,” Oncotarget, vol. 7, no. 25, pp. 37773–37789, 2016. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Fanale, V. Bazan, S. Caruso et al., “Hypoxia and human genome stability: downregulation of BRCA2 expression in breast cancer cell lines,” BioMed Research International, vol. 2013, Article ID 746858, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Fanale, V. Bazan, L. R. Corsini et al., “HIF-1 is involved in the negative regulation of AURKA expression in breast cancer cell lines under hypoxic conditions,” Breast Cancer Research and Treatment, vol. 140, no. 3, pp. 505–517, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. S.-H. Kim, Y.-Y. Park, S.-W. Kim, J.-S. Lee, D. Wang, and R. N. DuBois, “ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression,” Cancer Research, vol. 71, no. 22, pp. 7010–7020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Zhu, M. J. Tan, R.-L. Huang et al., “Angiopoietin-like 4 protein elevates the prosurvival intracellular O2:H2O2 ratio and confers anoikis resistance to tumors,” Cancer Cell, vol. 19, no. 3, pp. 401–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Hu, B. C. Jham, T. Ma et al., “Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma,” Oral Oncology, vol. 47, no. 5, pp. 371–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Ma, B. C. Jham, J. Hu et al., “Viral G protein-coupled receptor up-regulates Angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi's sarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14363–14368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Galaup, A. Cazes, S. Le Jan et al., “Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 49, pp. 18721–18726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Chen, X. Zhuang, L. Lin et al., “New horizons in tumor microenvironment biology: challenges and opportunities,” BMC Medicine, vol. 13, article 45, 2015. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Wan, K. Pantel, and Y. Kang, “Tumor metastasis: moving new biological insights into the clinic,” Nature Medicine, vol. 19, no. 11, pp. 1450–1464, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. N. S. Vasudev and A. R. Reynolds, “Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions,” Angiogenesis, vol. 17, no. 3, pp. 471–494, 2014. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Hu, S. Babapoor-Farrokhran, M. Rodrigues et al., “Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma,” Oncotarget, vol. 7, no. 7, pp. 7816–7828, 2016. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Babapoor-Farrokhran, K. Jee, B. Puchner et al., “Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 23, pp. E3030–E3039, 2015. View at Publisher · View at Google Scholar · View at Scopus
  122. X. Xin, M. Rodrigues, M. Umapathi et al., “Hypoxic retinal Müller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 36, pp. E3425–E3434, 2013. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Padua, X. H.-F. Zhang, Q. Wang et al., “TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4,” Cell, vol. 133, no. 1, pp. 66–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Li, C. Ge, F. Zhao et al., “Hypoxia-inducible factor 1 alpha–activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin β1 signaling in human hepatocellular carcinoma,” Hepatology, vol. 54, no. 3, pp. 910–919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Guo, S.-Y. Li, F.-Y. Ji et al., “Role of Angptl4 in vascular permeability and inflammation,” Inflammation Research, vol. 63, no. 1, pp. 13–22, 2014. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Salvatore, R. Marfella, M. R. Rizzo, and F. C. Sasso, “Pancreatic cancer and diabetes: a two-way relationship in the perspective of diabetologist,” International Journal of Surgery, vol. 21, no. 1, pp. S72–S77, 2015. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Trajkovic-Arsic, E. Kalideris, and J. T. Siveke, “The role of insulin and IGF system in pancreatic cancer,” Journal of Molecular Endocrinology, vol. 50, no. 3, pp. R67–R74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  128. C. M. Sousa and A. C. Kimmelman, “The complex landscape of pancreatic cancer metabolism,” Carcinogenesis, vol. 35, no. 7, pp. 1441–1450, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. L. K. Mamedova, K. Yuan, A. N. Laudick, S. D. Fleming, D. G. Mashek, and B. J. Bradford, “Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells,” Journal of Nutritional Biochemistry, vol. 24, no. 8, pp. 1499–1507, 2013. View at Publisher · View at Google Scholar · View at Scopus
  130. M. J. Khandekar, P. Cohen, and B. M. Spiegelman, “Molecular mechanisms of cancer development in obesity,” Nature Reviews Cancer, vol. 11, no. 12, pp. 886–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. N. A. Berger, “Obesity and cancer pathogenesis,” Annals of the New York Academy of Sciences, vol. 1311, no. 1, pp. 57–76, 2014. View at Publisher · View at Google Scholar · View at Scopus
  132. K. E. O'Sullivan, J. V. Reynolds, C. O'Hanlon, J. N. O'Sullivan, and J. Lysaght, “Could signal transducer and activator of transcription 3 be a therapeutic target in obesity-related gastrointestinal malignancy?” Journal of Gastrointestinal Cancer, vol. 45, no. 1, pp. 1–11, 2014. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Polvani, M. Tarocchi, S. Tempesti, L. Bencini, and A. Galli, “Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer,” World Journal of Gastroenterology, vol. 22, no. 8, pp. 2441–2459, 2016. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Taniguchi, M. Fukushima, M. Sakai et al., “Effects of bezafibrate on insulin sensitivity and insulin secretion in non-obese Japanese type 2 diabetic patients,” Metabolism, vol. 50, no. 4, pp. 477–480, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. T. Nakamura, C. Ushiyama, N. Shimada, K. Hayashi, I. Ebihara, and H. Koide, “Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients,” Journal of Diabetes and Its Complications, vol. 14, no. 5, pp. 250–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Sethi, O. Ziouzenkova, H. Ni, D. D. Wagner, J. Plutzky, and T. N. Mayadas, “Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPARα,” Blood, vol. 100, no. 4, pp. 1340–1346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Grygiel-Górniak, “Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review,” Nutrition Journal, vol. 13, article 17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  138. Y.-X. Wang, C.-H. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Medina-Gomez, S. L. Gray, L. Yetukuri et al., “PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism,” PLOS genetics, vol. 3, no. 4, article e64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. M. S. Rao, K. Papreddy, S. Musunuri, and A. Okonkwo, “Prevention/reversal of choline deficiency-induced steatohepatitis by a peroxisome proliferator-activated receptor α ligand in rats,” In Vivo, vol. 16, no. 2, pp. 145–152, 2002. View at Google Scholar · View at Scopus
  142. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. K. Kang, S. M. Reilly, V. Karabacak et al., “Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity,” Cell Metabolism, vol. 7, no. 6, pp. 485–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Mandard and D. Patsouris, “Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors,” PPAR Research, vol. 2013, Article ID 613864, 23 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  145. X. Xin, S. Yang, J. Kowalski, and M. E. Gerritsen, “Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo,” The Journal of Biological Chemistry, vol. 274, no. 13, pp. 9116–9121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Margeli, G. Kouraklis, and S. Theocharis, “Peroxisome proliferator activated receptor-γ (PPAR-γ) ligands and angiogenesis,” Angiogenesis, vol. 6, no. 3, pp. 165–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Trombetta, M. Maggiora, G. Martinasso, P. Cotogni, R. A. Canuto, and G. Muzio, “Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs,” Chemico-Biological Interactions, vol. 165, no. 3, pp. 239–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. Z.-H. Yang, H. Miyahara, Y. Iwasaki, J. Takeo, and M. Katayama, “Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice,” Nutrition and Metabolism, vol. 10, no. 1, article 16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  149. E. Mueller, P. Sarraf, P. Tontonoz et al., “Terminal differentiation of human breast cancer through PPARγ,” Molecular Cell, vol. 1, no. 3, pp. 465–470, 1998. View at Publisher · View at Google Scholar · View at Scopus
  150. R.-L. Huang, Z. Teo, H. C. Chong et al., “ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters,” Blood, vol. 118, no. 14, pp. 3990–4002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Zhou, Y.-H. Yang, and J. R. Basile, “The Semaphorin 4D-Plexin-B1-RhoA signaling axis recruits pericytes and regulates vascular permeability through endothelial production of PDGF-B and ANGPTL4,” Angiogenesis, vol. 17, no. 1, pp. 261–274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  152. B. Aryal, N. Rotllan, E. Araldi et al., “ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression,” Nature Communications, vol. 7, Article ID 12313, 2016. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Georgiadi, Y. Wang, R. Stienstra et al., “Overexpression of angiopoietin-like protein 4 protects against atherosclerosis development,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 7, pp. 1529–1537, 2013. View at Publisher · View at Google Scholar · View at Scopus
  154. P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism: Warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Hattori, E. Okochi-Takada, M. Kikuyama, M. Wakabayashi, S. Yamashita, and T. Ushijima, “Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas,” Cancer Science, vol. 102, no. 7, pp. 1337–1343, 2011. View at Publisher · View at Google Scholar · View at Scopus