Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2017 (2017), Article ID 8360919, 13 pages
https://doi.org/10.1155/2017/8360919
Review Article

Discovery of Novel Insulin Sensitizers: Promising Approaches and Targets

1Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
2Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130041, China
3Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
4Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China

Correspondence should be addressed to Xiujuan Fu; moc.361@300264jxf and Wei Chen; moc.621@54nehciew

Received 13 March 2017; Accepted 23 April 2017; Published 4 June 2017

Academic Editor: Brian N. Finck

Copyright © 2017 Yadan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Global report on diabetes, http://www.who.int/mediacentre/factsheets/fs312/en/.
  2. T. Or, T. Lm, and P. Mr, “Type 2 diabetes mellitus in children and adolescents: a relatively new clinical problem within pediatric practice,” Journal of Medicine and Life, vol. 9, pp. 235–239, 2016. View at Google Scholar
  3. H. E. Lebovitz, “Insulin resistance: definition and consequences,” Experimental And Clinical Endocrinology & Diabetes, vol. 109, supplement 2, pp. S135–S148, 2001. View at Google Scholar
  4. J. Boucher, A. Kleinridders, and C. Ronald Kahn, “Insulin receptor signaling in normal and insulin-resistant states,” Cold Spring Harbor Perspectives in Biology, vol. 6, no. 1, Article ID a009191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. D. D. Sears, G. Hsiao, A. Hsiao et al., “Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 44, pp. 18745–18750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. S. Higgins and A. M. Depaoli, “Selective peroxisome proliferator-activated receptor γ (PPARγ) modulation as a strategy for safer therapeutic PPARγ activation,” The American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 267S–272S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Colca, W. G. McDonald, G. S. Cavey et al., “Identification of a Mitochondrial Target of Thiazolidinedione Insulin Sensitizers (mTOT)-Relationship to Newly Identified Mitochondrial Pyruvate Carrier Proteins,” PLoS ONE, vol. 8, no. 5, Article ID e61551, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. McCommis and B. N. Finck, “Mitochondrial pyruvate transport: a historical perspective and future research directions,” Biochemical Journal, vol. 466, no. 3, pp. 443–454, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Janani and B. D. Ranjitha Kumari, “PPAR gamma gene—a review,” Diabetes & Metabolic Syndrome, vol. 9, pp. 46–50, 2015. View at Google Scholar
  10. J. M. Olefsky, “Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 467–472, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Heikkinen, J. Auwerx, and C. A. Argmann, “PPARγ in human and mouse physiology,” Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, vol. 1771, no. 8, pp. 999–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. E. Lebovitz, “Differentiating members of the thiazolidinedione class: a focus on safety,” Diabetes/Metabolism Research and Reviews, vol. 18, no. 2, pp. S23–S29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. King, “A comparison in a clinical setting of the efficacy and side effects of three thiazolidinediones,” Diabetes Care, vol. 23, no. 4, p. 557, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. P. S. Chaggar, S. M. Shaw, and S. G. Williams, “Review article: thiazolidinediones and heart failure,” Diabetes & Vascular Disease Research, vol. 6, pp. 146–152, 2009. View at Google Scholar
  15. A. V. Hernandez, A. Usmani, A. Rajamanickam, and A. Moheet, “Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials,” American Journal of Cardiovascular Drugs, vol. 11, no. 2, pp. 115–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Alemán-González-Duhart, F. Tamay-Cach, S. Álvarez-Almazán, and J. E. Mendieta-Wejebe, “Current advances in the biochemical and physiological aspects of the treatment of type 2 diabetes mellitus with thiazolidinediones,” PPAR Research, vol. 2016, Article ID 7614270, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. C. H. Tseng, “A review on thiazolidinediones and bladder cancer in human studies,” Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, vol. 32, pp. 1–45, 2014. View at Google Scholar
  18. S. Haubenwallner, A. D. Essenburg, B. C. Barnett et al., “Hypolipidemic activity of select fibrates correlates to changes in hepatic apolipoprotein C-III expression: a potential physiologic basis for their mode of action,” Journal of Lipid Research, vol. 36, pp. 2541–2551, 1995. View at Google Scholar
  19. B. Staels, N. Vu-Dac, V. A. Kosykh et al., “Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates,” Journal of Clinical Investigation, vol. 95, no. 2, pp. 705–712, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Grygiel-Górniak, “Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review,” Nutrition Journal, vol. 13, article 17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Zhang, W. Chen, X. Zhou et al., “C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor gamma in brown adipose tissue of db/db mice,” Biological & Pharmaceutical Bulletin, vol. 36, pp. 980–987, 2013. View at Google Scholar
  22. C. Fiévet, J.-C. Fruchart, and B. Staels, “PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 606–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. X.-J. Wang, J. Zhang, S.-Q. Wang, W.-R. Xu, X.-C. Cheng, and R.-L. Wang, “Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone,” Drug Design, Development and Therapy, vol. 8, pp. 2255–2262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Tenenbaum and E. Z. Fisman, “Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention?” Cardiovascular Diabetology, vol. 11, article 140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Chen, S. Fan, X. Xie, N. Xue, X. Jin, and L. Wang, “Novel PPAR pan agonist, ZBH ameliorates hyperlipidemia and insulin resistance in high fat diet induced hyperlipidemic hamster,” PLoS ONE, vol. 9, no. 4, Article ID e96056, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Jain, S. R. Giri, C. Trivedi et al., “Saroglitazar, a novel PPARalpha/gamma agonist with predominant PPARalpha activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models,” Pharmacology Research & Perspectives, vol. 3, article e00136, 2015. View at Google Scholar
  27. J. H. Choi, A. S. Banks, J. L. Estall et al., “Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ 3 by Cdk5,” Nature, vol. 466, no. 7305, pp. 451–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. H. Choi, A. S. Banks, T. M. Kamenecka et al., “Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation,” Nature, vol. 477, no. 7365, pp. 477–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-S. Choi, E. S. Kim, M. Koh et al., “A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity,” Journal of Biological Chemistry, vol. 289, no. 38, pp. 26618–26629, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Ming, X. Hu, Y. Song et al., “CMHX008, a novel peroxisome proliferator-activated receptor gamma partial agonist, enhances insulin sensitivity in vitro and in vivo,” PLoS ONE, vol. 9, no. 7, Article ID e102102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Agrawal, P. Jain, and S. N. Dikshit, “Balaglitazone: a second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist,” Mini-Reviews in Medicinal Chemistry, vol. 12, no. 2, pp. 87–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Xie, X. Zhou, W. Chen et al., “L312, a novel PPARγ ligand with potent anti-diabetic activity by selective regulation,” Biochimica et Biophysica Acta—General Subjects, vol. 1850, no. 1, pp. 62–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. D. H. Lee, H. Huang, K. Choi, C. Mantzoros, and Y.-B. Kim, “Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice,” American Journal of Physiology—Endocrinology and Metabolism, vol. 302, no. 5, pp. E552–E560, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Sanz, C. Sánchez-Martín, D. Detaille et al., “Acute mitochondrial actions of glitazones on the liver: a crucial parameter for their antidiabetic properties,” Cellular Physiology and Biochemistry, vol. 28, no. 5, pp. 899–910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. S. Divakaruni, S. E. Wiley, G. W. Rogers et al., “Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 14, pp. 5422–5427, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Tan, D. Liu, F. Pan et al., “His-87 ligand in mitoNEET is crucial for the transfer of iron sulfur clusters from mitochondria to cytosolic aconitase,” Biochemical and Biophysical Research Communications, vol. 470, no. 1, pp. 226–232, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. J. R. Colca, W. G. McDonald, D. J. Waldon et al., “Mathews, Identification of a novel mitochondrial protein (’mitoNEET’) cross-linked specifically by a thiazolidinedione photoprobe,” American Journal of Physiology. Endocrinology And Metabolism, vol. 286, pp. E252–260, 2004. View at Google Scholar
  38. M. L. Paddock, S. E. Wiley, H. L. Axelrod et al., “MitoNEET is a uniquely folded 2Fe-2S outer mitochondrial membrane protein stabilized by pioglitazone,” Proceedings of The National Academy of Sciences of The United States of America, vol. 104, pp. 14342–14347, 2007. View at Google Scholar
  39. R. M. Bieganski and M. L. Yarmush, “Novel ligands that target the mitochondrial membrane protein mitoNEET,” Journal of Molecular Graphics & Modelling, vol. 29, no. 7, pp. 965–973, 2011. View at Google Scholar
  40. T. Takahashi, M. Yamamoto, K. Amikura et al., “A novel MitoNEET ligand, TT01001, improves diabetes and ameliorates mitochondrial function in db/db mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 352, no. 2, pp. 338–345, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Raman and R. L. Judd, “Role of glucose and insulin in thiazolidinedione-induced alterations in hepatic gluconeogenesis,” European Journal of Pharmacology, vol. 409, no. 1, pp. 19–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. A. P. Thomas and A. P. Halestrap, “The role of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes,” Biochemical Journal, vol. 198, no. 3, pp. 551–560, 1981. View at Publisher · View at Google Scholar · View at Scopus
  43. K. S. McCommis, Z. Chen, X. Fu et al., “Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling,” Cell Metabolism, vol. 22, no. 4, pp. 682–694, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. J. R. Colca, S. P. Tanis, W. G. McDonald, and R. F. Kletzien, “Insulin sensitizers in 2013: new insights for the development of novel therapeutic agents to treat metabolic diseases,” Expert Opinion on Investigational Drugs, vol. 23, no. 1, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. R. C. Shah, D. C. Matthews, R. D. Andrews et al., “An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer's disease,” Current Alzheimer Research, vol. 11, no. 6, pp. 564–573, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. J. R. Colca, J. T. Vanderlugt, W. J. Adams et al., “Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer,” Clinical Pharmacology and Therapeutics, vol. 93, no. 4, pp. 352–359, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Andrade-Oliveira, N. O. Câmara, and P. M. Moraes-Vieira, “Adipokines as drug targets in diabetes and underlying disturbances,” Journal of Diabetes Research, vol. 2015, Article ID 681612, 11 pages, 2015. View at Publisher · View at Google Scholar
  48. R. Dimova and T. Tankova, “The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis,” BioMed Research International, vol. 2015, Article ID 823481, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. Z.-Y. Li, J. Song, S.-L. Zheng et al., “Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling,” Diabetes, vol. 64, no. 12, pp. 4011–4022, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. S. L. Zheng, Z. Y. Li, J. Song, J. M. Liu, and C. Y. Miao, “Metrnl: a secreted protein with new emerging functions,” Acta Pharmacologica Sinica, vol. 37, pp. 571–579, 2016. View at Google Scholar
  51. P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” The Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Ruan and L. Q. Dong, “Adiponectin signaling and function in insulin target tissues,” Journal of Molecular Cell Biology, vol. 8, no. 2, pp. 101–109, 2016. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Yamauchi, J. Kamon, H. Waki et al., “Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2461–2468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Halberg, T. D. Schraw, Z. V. Wang et al., “Systemic fate of the adipocyte-derived factor adiponectin,” Diabetes, vol. 58, no. 9, pp. 1961–1970, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. R. Nawrocki, M. W. Rajala, E. Tomas et al., “Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists,” The Journal of Biological Chemistry, vol. 281, no. 5, pp. 2654–2660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Yamauchi, Y. Nio, T. Maki et al., “Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions,” Nature Medicine, vol. 13, no. 3, pp. 332–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Yamauchi, J. Kamon, Y. Ito et al., “Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,” Nature, vol. 423, no. 6941, pp. 762–769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, “The adipocyte-secreted protein Acrp30 enhances hepatic insulin action,” Nature Medicine, vol. 7, no. 8, pp. 947–953, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Iwabu, T. Yamauchi, M. Okada-Iwabu, and T. Kadowaki, “Adiponectin receptor-targeted therapy for lifestyle-related diseases,” Clinical Calcium, vol. 26, pp. 413–418, 2016. View at Google Scholar
  60. M. Okada-Iwabu, T. Yamauchi, M. Iwabu et al., “A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity,” Nature, vol. 503, no. 7477, pp. 493–499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Okada-Iwabu, M. Iwabu, K. Ueki, T. Yamauchi, and T. Kadowaki, “Perspective of small-molecule adipoR agonist for type 2 diabetes and short life in obesity,” Diabetes & Metabolism Journal, vol. 39, pp. 363–372, 2015. View at Google Scholar
  62. Y. Zhang, J. Zhao, R. Li et al., “AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings,” American Journal of Physiology—Endocrinology and Metabolism, vol. 309, no. 3, pp. E275–E282, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. J. A. Seo and N. H. Kim, “Fibroblast growth factor 21: a novel metabolic regulator,” Diabetes & Metabolism Journal, vol. 36, pp. 26–28, 2012. View at Google Scholar
  64. I. Dostalova, D. Haluzikova, and M. Haluzik, “Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus,” Physiological Research, vol. 58, pp. 1–7, 2009. View at Google Scholar
  65. P. A. Dutchak, T. Katafuchi, A. L. Bookout et al., “Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones,” Cell, vol. 148, no. 3, pp. 556–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. M. M. Véniant, G. Sivits, J. Helmering et al., “Pharmacologic effects of FGF21 are independent of the ‘browning’ of white adipose tissue,” Cell Metabolism, vol. 21, no. 5, pp. 731–738, 2015. View at Publisher · View at Google Scholar · View at Scopus
  67. M. A. Gomez-Samano, M. Grajales-Gomez, J. M. Zuarth-Vazquez et al., “Fibroblast growth factor 21 and its novel association with oxidative stress,” Redox Biology, vol. 11, pp. 335–341, 2017. View at Google Scholar
  68. J. W. Jonker, J. M. Suh, A. R. Atkins et al., “A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis,” Nature, vol. 485, no. 7398, pp. 391–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Suh, J. W. Jonker, M. Ahmadian et al., “Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer,” Nature, vol. 513, no. 7518, pp. 436–439, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Lin, H. Tian, K. S. L. Lam et al., “Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice,” Cell Metabolism, vol. 17, no. 5, pp. 779–789, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Y. Chen, G. M. Li, Q. Dong, and H. Peng, “miR-577 inhibits pancreatic β-cell function and survival by targeting fibroblast growth factor 21 (FGF-21) in pediatric diabetes,” Genetics and Molecular Research, vol. 14, no. 4, pp. 15462–15470, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Ohta and N. Itoh, “Fgf signaling in adipocytes as a target for metabolic diseases,” Molecular Metabolism, vol. 2, no. 1, pp. 3-4, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. A. C. Adams, C. A. Halstead, B. C. Hansen et al., “LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys,” PLoS ONE, vol. 8, no. 6, Article ID e65763, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Kharitonenkov, J. M. Beals, R. Micanovic et al., “Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319,” PLoS ONE, vol. 8, no. 3, Article ID e58575, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Literáti-Nagy, E. Kulcsár, Z. Literáti-Nagy et al., “Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial,” Hormone And Metabolic Research, vol. 41, no. 5, pp. 374–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Literáti-Nagy, K. Tory, B. Peitl et al., “Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies,” Metabolic Syndrome and Related Disorders, vol. 12, no. 2, pp. 125–131, 2014. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Gombos, T. Crul, S. Piotto et al., “Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts,” PLoS ONE, vol. 6, no. 12, Article ID e28818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Kurucz, Á. Morva, A. Vaag et al., “Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance,” Diabetes, vol. 51, no. 4, pp. 1102–1109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. C. R. Bruce, A. L. Carey, J. A. Hawley, and M. A. Febbraio, “Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism,” Diabetes, vol. 52, no. 9, pp. 2338–2345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Sõti, E. Nagy, Z. Giricz, L. Vígh, P. Csermely, and P. Ferdinandy, “Heat shock proteins as emerging therapeutic targets,” British Journal of Pharmacology, vol. 146, no. 6, pp. 769–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. R. R. Shankar, Y. Wu, H.-Q. Shen, J.-S. Zhu, and A. D. Baron, “Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance,” Diabetes, vol. 49, no. 5, pp. 684–687, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. S. R. Kashyap, L. J. Roman, J. Lamont et al., “Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 1100–1105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Chung, A.-K. Nguyen, D. C. Henstridge et al., “HSP72 protects against obesity-induced insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1739–1744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. D. C. Henstridge, C. R. Bruce, B. G. Drew et al., “Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance,” Diabetes, vol. 63, no. 6, pp. 1881–1894, 2014. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Sumegi, K. Fekete, C. Antus et al., “BGP-15 protects against oxidative stress- or lipopolysaccharide-induced mitochondrial destabilization and reduces mitochondrial production of reactive oxygen species,” PloS One, vol. 12, article e0169372, 2017. View at Google Scholar
  86. M. Wang, “Inhibitors of 11β-hydroxysteroid dehydrogenase type 1 in antidiabetic therapy,” in Handbook of Experimental Pharmacology, pp. 127–146, 2011. View at Google Scholar
  87. R. Ge, Y. Huang, G. Liang, and X. Li, “11β-Hydroxysteroid dehydrogenase type 1 inhibitors as promising therapeutic drugs for diabetes: status and development,” Current Medicinal Chemistry, vol. 17, no. 5, pp. 412–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Chen, L. L. Wang, H. Y. Liu, L. Long, and S. Li, “Peroxisome proliferator-activated receptor delta-agonist, GW501516, ameliorates insulin resistance, improves dyslipidaemia in monosodium L-glutamate metabolic syndrome mice,” Basic & Clinical Pharmacology & Toxicology, vol. 103, pp. 240–246, 2008. View at Google Scholar
  89. P. Anagnostis, N. Katsiki, F. Adamidou et al., “11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders?” Metabolism: Clinical and Experimental, vol. 62, no. 1, pp. 21–33, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Masuzaki, H. Yamamoto, C. J. Kenyon et al., “Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice,” The Journal of Clinical Investigation, vol. 112, no. 1, pp. 83–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. E. E. Kershaw, N. M. Morton, H. Dhillon, L. Ramage, J. R. Seckl, and J. S. Flier, “Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity,” Diabetes, vol. 54, no. 4, pp. 1023–1031, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Okazaki, T. Takahashi, T. Iwamura et al., “HIS-388, a novel orally active and long-acting 11β-hydroxysteroid dehydrogenase type 1 inhibitor, ameliorates insulin sensitivity and glucose intolerance in diet-induced obesity and nongenetic type 2 diabetic murine models,” Journal of Pharmacology and Experimental Therapeutics, vol. 351, no. 1, pp. 181–189, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Zhao, Y. Pan, K. Peng et al., “Inhibition of 11β-HsD1 by LG13 improves glucose metabolism in type 2 diabetic mice,” Journal of Molecular Endocrinology, vol. 55, no. 2, pp. 119–131, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Joharapurkar, N. Dhanesha, G. Shah, R. Kharul, and M. Jain, “11β-Hydroxysteroid dehydrogenase type 1: potential therapeutic target for metabolic syndrome,” Pharmacological Reports, vol. 64, no. 5, pp. 1055–1065, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Y. Byun, Y. J. Shin, K. Y. Nam, S. P. Hong, and S. K. Ahn, “A novel highly potent and selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, UI-1499,” Life Sciences, vol. 120, pp. 1–7, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Rosenstock, S. Banarer, V. A. Fonseca et al., “The 11-β-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy,” Diabetes Care, vol. 33, no. 7, pp. 1516–1522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Coughlan, R. J. Valentine, N. B. Ruderman, and A. K. Saha, “AMPK activation: a therapeutic target for type 2 diabetes?” Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, vol. 7, pp. 241–253, 2014. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Fogarty and D. G. Hardie, “Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 581–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. K. A. Weikel, N. B. Ruderman, and J. M. Cacicedo, “Unraveling the actions of AMP-activated protein kinase in metabolic diseases: systemic to molecular insights,” Metabolism: Clinical and Experimental, vol. 65, no. 5, pp. 634–645, 2016. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Kim, G. Yang, Y. Kim, J. Kim, and J. Ha, “AMPK activators: mechanisms of action and physiological activities,” Experimental & Molecular Medicine, vol. 48, p. e224, 2016. View at Google Scholar
  101. H. Li, J. Lee, C. He, M.-H. Zou, and Z. Xie, “Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids,” American Journal of Physiology—Endocrinology and Metabolism, vol. 306, no. 2, pp. E197–E209, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. D. G. Hardie, “AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease,” Journal of Internal Medicine, vol. 276, no. 6, pp. 543–559, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. N. B. Ruderman, D. Carling, M. Prentki, and J. M. Cacicedo, “AMPK, insulin resistance, and the metabolic syndrome,” The Journal of Clinical Investigation, vol. 123, no. 7, pp. 2764–2772, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. L. G. D. Fryer, A. Parbu-Patel, and D. Carling, “The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways,” The Journal of Biological Chemistry, vol. 277, no. 28, pp. 25226–25232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. I. Osman and L. Segar, “Pioglitazone, a PPARγ agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling,” Biochemical Pharmacology, vol. 101, pp. 54–70, 2016. View at Publisher · View at Google Scholar
  106. K. Mahmood, M. Naeem, and N. A. Rahimnajjad, “Metformin: the hidden chronicles of a magic drug,” European Journal of Internal Medicine, vol. 24, no. 1, pp. 20–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. X. Yang, Z. Xu, C. Zhang, Z. Cai, and J. Zhang, “Metformin, beyond an insulin sensitizer, targeting heart and pancreatic beta cells,” Biochimica et Biophysica Acta, vol. 16, pp. 30243–30245, 2016. View at Google Scholar
  108. S. Andrzejewski, S. P. Gravel, M. Pollak, and J. St-Pierre, “Metformin directly acts on mitochondria to alter cellular bioenergetics,” Cancer & Metabolism, vol. 2, p. 12, 2014. View at Google Scholar
  109. A. Luengo, L. B. Sullivan, and M. G. V. Heiden, “Understanding the complex-I-ty of metformin action: Limiting mitochondrial respiration to improve cancer therapy,” BMC Biology, vol. 12, no. 1, article 82, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. L. He and F. E. Wondisford, “Metformin action: concentrations matter,” Cell Metabolism, vol. 21, no. 2, pp. 159–162, 2015. View at Publisher · View at Google Scholar · View at Scopus
  111. C. S. Zhang, M. Li, T. Ma et al., “Metformin activates ampk through the lysosomal pathway,” Cell Metabolism, vol. 24, pp. 521-522, 2016. View at Google Scholar
  112. T. Luo, A. Nocon, J. Fry et al., “AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity,” Diabetes, vol. 65, no. 8, pp. 2295–2310, 2016. View at Publisher · View at Google Scholar · View at Scopus
  113. H. Yadav, S. Devalaraja, S. T. Chung, and S. G. Rane, “TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis,” Journal of Biological Chemistry, vol. 292, no. 8, pp. 3420–3432, 2017. View at Publisher · View at Google Scholar
  114. S. K. Lee, J. O. Lee, J. H. Kim et al., “Metformin sensitizes insulin signaling through AMPK-mediated pten down-regulation in preadipocyte 3T3-L1 cells,” Journal of Cellular Biochemistry, vol. 112, no. 5, pp. 1259–1267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. J. O. Lee, S. K. Lee, J. H. Kim et al., “Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells,” Journal of Biological Chemistry, vol. 287, no. 53, pp. 44121–44129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. M. P. Hage, M. R. Al-Badri, and S. T. Azar, “A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role,” Therapeutic Advances in Endocrinology and Metabolism, vol. 5, no. 4, pp. 77–85, 2014. View at Publisher · View at Google Scholar · View at Scopus
  117. A. P. Bevan, J. R. Christensen, J. Tikerpae, and G. D. Smith, “Chloroquine augments the binding of insulin to its receptor,” Biochemical Journal, vol. 311, no. 3, pp. 787–795, 1995. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Mercer, L. Rekedal, R. Garg, B. Lu, E. M. Massarotti, and D. H. Solomon, “Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals,” Arthritis Research & Therapy, vol. 14, article R135, 2012. View at Google Scholar