Psyche: A Journal of Entomology

Psyche: A Journal of Entomology / 2010 / Article

Research Article | Open Access

Volume 2010 |Article ID 149879 |

Ormaily Madruga Rios, Maike Hernández Quinta, "Larval Feeding Habits of the Cuban Endemic Firefly Alecton discoidalis Laporte (Coleoptera: Lampyridae)", Psyche: A Journal of Entomology, vol. 2010, Article ID 149879, 5 pages, 2010.

Larval Feeding Habits of the Cuban Endemic Firefly Alecton discoidalis Laporte (Coleoptera: Lampyridae)

Academic Editor: Martin H. Villet
Received24 May 2010
Accepted04 Jul 2010
Published23 Aug 2010


Alecton Laporte, 1833, with four known species is the only firefly genus endemic to Cuba. Alecton discoidalis Laporte, 1833, is its most common species, distributed in the western half of the country. Unfortunately, much of its life history remains unknown, as with the rest of Cuban representatives of the family Lampyridae. Larvae are associated with adults of A. discoidalis through rearing, and observations on larval feeding habits of this species are presented. Thirteen species belonging to seven gastropod families are reported for the first time as prey of A. discoidalis larvae. Our data suggest that these are generalist predators of terrestrial snails. A remarkably close association exists between this lampyrid and operculate species of snails. The later represents the most abundant and diverse group of molluscs in limestone landscapes, where the beetles are commonly found.

1. Introduction

The Lampyridae is one of the coleopteran families with many gaps regarding the knowledge of its taxonomy and ecology in the Caribbean region. Currently, 37 species in 8 genera of fireflies are reported in Cuba [1].

Alecton Laporte, 1833, with four known species is the only genus of the family endemic to Cuba. Alecton discoidalis Laporte, 1833, is its most common species, distributed in the western half of the country. All what is known about the genus natural history is that larvae prey on terrestrial snails of the family of Helicinidae [2, 3]. Ecological and ethological data are lacking for any Cuban Lampyridae, both for adults and larvae. As for the latter, there are some important contributions for lampyrids of other regions [47]. The entire literature on Cuban fireflies is represented by taxonomic works [811] or species lists [1, 12]. Data on A. discoidalis natural history, specifically the feeding habits of its larvae, are herein provided.

2. Materials and Methods

Specimens were collected throughout two nights in August 2009, at Pan de Matanzas ( 𝑛 = 1 4 ), one night in February 2010, at Bacunayagua ( 𝑛 = 3 ) and during the day of the same month at Escaleras de Jaruco, La Jaula ( 𝑛 = 3 ). All these areas are located in western Cuba (Figure 1(a)). Localities where immature stages were collected are characterized by outcrops of limestone and some degree of disturbance (Figures 1(b), 1(c), and 1(d)). Most larvae were captured while emitting light signals (from 20:00 to 22:00 hours approximately). Individuals of different instars were collected, most of them in the leaf litter and some under or even on rocks. Temperature and humidity of those nights were in the range of 26– 3 2 C and 64–86%, respectively, and for Escaleras de Jaruco, during the day, were between22– 2 5 C and 80–93% respectively, recorded with a digital Control Company thermohygrometer (error = 1 C and 1% RH).

Several species of terrestrial snails were also collected to feed lampyrid larvae in captivity. The snails were abundant on the ground, near the firefly larvae, on neighboring limestone walls, and on vegetation, less than 1m above ground. All possible representatives of the snails that could be potential prey items were collected. Also, snail species from Sierra del Rosario, where this firefly genus is present, were offered to the larvae. Preys offered were always snails, except for one earthworm.

Individuals were reared in Petri dishes of 9 cm diameter, with fragments of soil litter and mosses that were sprayed regularly with water to preserve humidity, the most critical requirement for other lampyrid species [13]. In most cases they were individualized, but the smallest instars were kept together. Room temperature and humidity were daily monitored, and kept in the range of 22– 3 3 C and 47–98%, respectively. The broad variation range of room humidity should not have any effect on larvae since the insides of the dishes were always damp.

3. Results and Discussion

The larva of A. discoidalis is associated with conspecific adults for the first time through rearing, the most reliable association, sometimes very difficult to obtain in this group [14]. Two earlier publications [2, 3], both on gastropods, identified the larvae only as Alecton sp. A complete description of the larva is being prepared. Clench and Jacobson [2] mentioned predation of Alecton larvae on Viana regina, and González [3] on Trochelviana sp. Both snail genera are operculate (Subclass: Prosobranchia), as well as the majority of prey items accepted in this study (Table 1). Helicinidae and Potamiidae species represented 71% and 92%, respectively, of those accepted by the larvae. These groups constitute the most abundant and diverse families in Cuban limestone landscapes. Particularly, the density of Potamiidae is very high in these areas, sometimes over 10 ind/m2.

Family and speciesNumber of snail offeredNumber of snail accepted

Helicinidae (Subclass Prosobranchia)
 Helicina aspersa (T)1512
 Ustronia sloanei (R)117
 Alcadia hispida (G)44
 Emoda sagraina (G)41

Potamiidae (Subclass Prosobranchia)
 Chondropoma pictum (G, R, T)1615
 C. auberianum (T)11
 C. irradians (G, R)55
 Eutudora jimenoi (R)87
 Torrella inmersa (R)11
 Rhytidiopoma coronatum (R)33

Megalostomidae (Subclass Prosobranchia)
 Farcimen tortum (G)52

Bulimulidae (Subclass Pulmonata)
 Liguus fasciatus (T)10

Urocoptidae (Subclass Pulmonata)
 Pycnoptychia sp. (G)10

Oleacinidae (Subclass Pulmonata)
 Oleacina sp. (G)11

Polygyridae (Subclass Pulmonata)
 Praticolella griseola (T)33

The snails most vulnerable to A. discoidalis larvae’s attack seem to be ground and rock dwellers, followed by tree dwellers. The latter can fall to the ground with the leaf where they are resting or hibernating; it is even possible that lampyrid larvae climb up to the trees, as they do with rocks. Species of Urocoptidae (Pycnoptychia sp.) and Bulimulidae (Liguus fasciatus) were not eaten by A. discoidalis larvae. The former is a very spirally and elongated species, preventing access of the larva to the snail's body. It is therefore quite likely that this group of gastropods does not constitute prey of A. discoidalis larvae. The earthworm offered was not eaten either.

Larvae of A. discoidalis were also observed in nature feeding on three snail species: Torrella inmersa (at Pan de Matanzas), Chondropoma pictum (Bacunayagua), and Rhytidiopoma coronatum (Escaleras de Jaruco). The first two observations were made at night while the third one was made during daylight (0900–1200 h) on three different occasions. Although McLean et al. [13] in photurid larvae, said that feeding is promoted by temperatures of 20– 2 5 C and by darkness, A. discoidalis larvae could be so nocturnal as diurnal, since the attacks observed in captivity not always occurred at night. Nevertheless, according to our observations, the larvae may spend around 24 hours inside a single prey until finishing with it. Lampyrid larvae were seen feeding only on both living and fresh terrestrial snails, either in nature or in captivity (Figure 2). On some occasions, that is, the early stages, several larvae (up to three) were seen consuming together a single snail (Figure 2(b)).

Clench and Jacobson [2] suggested that lampyrid larvae may wait for the Viana to relax the operculum and then attack. In this paper, we observed that they attack mostly active or recently active snails. When snails spend many days inactive with the opercula closed, they are seldom attacked. On some occasions, the snails (especially H. aspersa and C. pictum) begin to foam when lampyrid larvae attack them (Figure 2(f)). Performing such a specific behavior, they evaded the attack. Another behavior was observed in the field when C. pictum swung the shell forward when disturbed by us. Wang et al. [5] described this behaviour in other snails and interpreted it as a defense mechanism in order to avoid attacks by other larvae.

More detailed papers are needed for a better understanding of the natural history of this endemic firefly. Label data from collections of A. discoidalis are mostly from limestone landscapes. This may suggest an association with operculate gastropods, abundant in such places. Therefore, a food preference study and a biogeographical analysis of these two invertebrate taxa could show how closely related they are or even they may have had a coevolving relationship defined by their predator-prey connection.


The authors thank Gilberto Silva, Rayner Núñez, and Esteban Gutiérrez for their critical review of this paper, and Oraily Madruga for her corrections to it. The authors are grateful to Rayner, Annery, Anay, Jans, Maikel, and Aurora for their help in collecting firefly larvae. Author’ gratitude is due to Annabelle Vidal and Joel Lastra from “Flora y Fauna” of Havana Territory for their collaboration at Escaleras de Jaruco Protected Area. The instruments used in this paper were donated by IDEA WILD. Two anonymous reviewers contributed to clarifying the submitted manuscript.


  1. S. B. Peck, “A checklist of the beetles of Cuba with data on distributions and bionomics (Insecta: Coleoptera),” in Arthropods of Florida and Neighbouring Areas, vol. 18, pp. 1–241, Florida Department of Agriculture and Consumer Services. Division of Plant Industry, 2005. View at: Google Scholar
  2. W. J. Clench and M. K. Jacobson, “Monograph of the Cuban genus Viana,” Breviora, vol. 298, pp. 1–25, 1968. View at: Google Scholar
  3. A. González, Cuba, el Paraíso de los Moluscos Terrestres, A. González, Ed, Greta Editores, Lleida, Spain, 2008.
  4. X. Fu, O. Nobuyoshi, F. V. Vencl, and L. Chaoliang, “Structure, behavior, and the life cycle of an aquatic firefly, Luciola substriata, in China,” Canadian Entomologist, vol. 137, no. 1, pp. 83–90, 2005. View at: Google Scholar
  5. Y. Wang, X. Fu, C. Lei, M.-L. Jeng, and O. Nobuyoshi, “Biological characteristics of the terrestrial firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae),” Coleopterists Bulletin, vol. 61, no. 1, pp. 85–93, 2007. View at: Publisher Site | Google Scholar
  6. M. Archangelsky and M. A. Branham, “Description of the preimaginal stages of Pyractomena borealis (Randall, 1838) (Coleoptera: Lampyridae) and notes on its biology,” Proceedings of the Entomological Society of Washington, vol. 100, no. 3, pp. 421–430, 1998. View at: Google Scholar
  7. S. P. Rosa, “Description of Photuris fulvipes (Blanchard) immatures (Coleoptera, Lampyridae, Photurinae) and bionomic aspects under laboratory conditions,” Revista Brasileira de Entomologia, vol. 51, no. 2, pp. 125–130, 2007. View at: Google Scholar
  8. C. W. Leng and A. J. Mutchler, “The Lycidae, Lampyridae and Cantharidae (Telephoridae) of the West Indies,” Bulletin of the American Museum of Natural History, vol. 46, pp. 413–499, 1922. View at: Google Scholar
  9. A. J. Mutchler, “Notes on the West Indies Lycidae and Lampyridae (Coleoptera), with descriptions of new forms,” American Museum Novitates, vol. 60, pp. 1–13, 1923. View at: Google Scholar
  10. A. J. Mutchler, “Notes on the West Indies Lampyridae and Cantharidae (Coleoptera), with descriptions of new forms,” American Museum Novitates, vol. 63, pp. 1–9, 1923. View at: Google Scholar
  11. F. A. McDermott, “The taxonomy of Lampyridae (Coleoptera),” Transactions of the American Entomological Society, vol. 90, pp. 1–72, 1964. View at: Google Scholar
  12. M. A. Branham, “The fireflies of the Fernando de Zayas collection, Havana, Cuba with notes on their taxonomic status (Coleoptera: Lampyridae),” Coleopterists Bulletin, vol. 60, no. 1, pp. 49–52, 2006. View at: Publisher Site | Google Scholar
  13. M. McLean, J. Buck, and F. E. Hanson, “Culture and larval behavior of photurid fireflies,” American Midland Naturalist, vol. 87, no. 1, pp. 133–145, 1972. View at: Google Scholar
  14. L. A. Ballantyne and R. Menayah, “A description of larvae and redescription of adults of the firefly Pteroptyx valida Olivier in Selangor, Malaysia (Coleoptera: Lampyridae: Luciolinae), with notes on Luciolinae larvae,” Raffles Bulletin of Zoology, vol. 50, no. 1, pp. 101–109, 2002. View at: Google Scholar

Copyright © 2010 Ormaily Madruga Rios and Maike Hernández Quinta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.