Table of Contents Author Guidelines Submit a Manuscript
Volume 2010, Article ID 872736, 9 pages
Research Article

Patch Departure Behavior of Bumble Bees: Rules and Mechanisms

Yupparaj Wittayarlai, Amper Muang, Chiang Mai 50100, Thailand

Received 1 August 2009; Accepted 6 February 2010

Academic Editor: Koos (J. C.) Biesmeijer

Copyright © 2010 Dale E. Taneyhill. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


I present an increment-decay model for the mechanism of bumble bees' decision to depart from inflorescences. The probability of departure is the consequence of a dynamic threshold level of stimuli necessary to elicit a stereotyped landing reaction. Reception of floral nectar lowers this threshold, making the bee less likely to depart. Concurrently the threshold increases, making departure from the inflorescence more probable. Increments to the probability of landing are an increasing, decelerating function of nectar volume, and are worth less, in sequence, for the same amount of nectar. The model is contrasted to threshold departure rules, which predict that bees will depart from inflorescences if the amount of nectar in the last one or two flowers visited is below a given level. Field tests comparing the two models were performed with monkshood (Aconitum columbianum). Treated flowers contained a descending series of nectar volumes (6 to 0  𝜇 L of 30 % sucrose solution). The more nectar that bees encountered in the treated flowers, the more likely they were to remain within the inflorescence after subsequently visiting one to three empty flowers. I discuss the differences between rules and mechanisms in regard to cognitive models of foraging behavior.