Table of Contents Author Guidelines Submit a Manuscript
Volume 2011 (2011), Article ID 980372, 9 pages
Research Article

Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) in North America

1Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
2CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia

Received 1 June 2010; Revised 6 August 2010; Accepted 7 August 2010

Academic Editor: Michel Lecoq

Copyright © 2011 O. Olfert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.