Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 268621, 10 pages
http://dx.doi.org/10.1155/2012/268621
Review Article

Semiochemical Diversity in Practice: Antiattractant Semiochemicals Reduce Bark Beetle Attacks on Standing Trees—A First Meta-Analysis

Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences (SLU), 230 53 Alnarp, Sweden

Received 15 January 2012; Revised 16 April 2012; Accepted 17 April 2012

Academic Editor: John A. Byers

Copyright © 2012 Fredrik Schlyter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Dimitri, U. Gebauer, R. Lösekrug, and O. Vaupel, “Influence of mass trapping on the population dynamic and damage-effect of bark beetles,” Journal of Applied Entomology, vol. 114, no. 1–5, pp. 103–109, 1992. View at Google Scholar
  2. M. Faccoli and F. Stergulc, “Damage reduction and performance of mass trapping devices for forest protection against the spruce bark beetle, Ips typographus (Coleoptera Curculionidae Scolytinae),” Annals of Forest Science, vol. 65, no. 309, pp. 1–9, 2008. View at Google Scholar
  3. J.-C. Grégoire and H. F. Evans, “Damage and control of Bawbilt organisms—an overview,” in Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis, F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans, Eds., pp. 19–37, Springer, Amsterdam, The Netherlands, 2004. View at Google Scholar
  4. B. Wermelinger, “Ecology and management of the spruce bark beetle Ips typographus—a review of recent research,” Forest Ecology and Management, vol. 202, no. 1–3, pp. 67–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. H. Zhang and F. Schlyter, “Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles,” Agricultural and Forest Entomology, vol. 6, no. 1, pp. 1–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. J. Bentz, J. Rgnire, C. J. Fettig et al., “Climate change and bark beetles of the western United States and Canada: direct and indirect effects,” BioScience, vol. 60, no. 8, pp. 602–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Jactel, J. Petit, M.-L. Desprez-Loustau et al., “Drought effects on damage by forest insects and pathogens: a meta-analysis,” Global Change Biology, vol. 18, no. 1, pp. 267–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Schlyter, I. Stjernquist, L. Bärring, A. M. Jönsson, and C. Nilsson, “Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce,” Climate Research, vol. 31, no. 1, pp. 75–84, 2006. View at Google Scholar · View at Scopus
  9. F. Schlyter and J. Witzell, “Forests: carbon storages in peril,” Public Service Review, vol. 3, pp. 136–137, 2009. View at Google Scholar
  10. G. Stewart, “Meta-analysis in applied ecology,” Biology Letters, vol. 6, no. 1, pp. 78–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Cook, Z. R. Khan, and J. A. Pickett, “The use of push-pull strategies in integrated pest management,” Annual Review of Entomology, vol. 52, pp. 375–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. E. Gillette and A. S. Munson, “Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles,” in The Western Bark Beetle Research Group: A Unique Collaboration With Forest Health Protection. General Technical Report PNW-GTR-784, J. L. Hayes and J. E. Lundquist, Eds., pp. 85–127, United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Ore, USA, 2009. View at Google Scholar
  13. M. J. Bown and A. J. Sutton, “Quality control in systematic reviews and meta-analyses,” European Journal of Vascular and Endovascular Surgery, vol. 40, no. 5, pp. 669–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. V. Glass, B. McGaw, and M. L. Smith, Meta-Analysis in Social Research, vol. 56, Sage, Beverly Hills, Calif, USA, 1981.
  15. H. J. Schünemann, A. D. Oxman, G. E. Vist et al., “Interpreting results and drawing conclusions,” in Cochrane Handbook for Systematic Reviews of Interventions, pp. 359–387, John Wiley and Sons, Chichester, UK, 2008. View at Google Scholar
  16. A. J. Sutton and J. P. T. Higgins, “Recent developments in meta-analysis,” Statistics in Medicine, vol. 27, no. 5, pp. 625–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Chaplin-Kramer, M. E. O'Rourke, E. J. Blitzer, and C. Kremen, “A meta-analysis of crop pest and natural enemy response to landscape complexity,” Ecology Letters, vol. 14, no. 9, pp. 922–932, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Gurevitch and L. V. Hedges, “Statistical issues in ecological meta-analyses,” Ecology, vol. 80, no. 4, pp. 1142–1149, 1999. View at Google Scholar · View at Scopus
  19. M. J. Lajeunesse, “Achieving synthesis with meta-analysis by combining and comparing all available studies,” Ecology, vol. 91, no. 9, pp. 2561–2564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Jactel and E. G. Brockerhoff, “Tree diversity reduces herbivory by forest insects,” Ecology Letters, vol. 10, no. 9, pp. 835–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Shrivastava, M. Rogers, A. Wszelaki, D. R. Panthee, and F. Chen, “Plant volatiles-based insect pest management in organic farming,” Critical Reviews in Plant Sciences, vol. 29, no. 2, pp. 123–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. D. Pigott, Advances in Meta-Analysis, Springer, New York, NY, USA, 2012.
  23. M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein, Introduction to Meta-Analysis, John Wiley and Sons, Chichester, UK, 2009.
  24. S. Nakagawa and I. C. Cuthill, “Effect size, confidence interval and statistical significance: a practical guide for biologists,” Biological Reviews, vol. 82, no. 4, pp. 591–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Deeks, J. Higgins, D. G. Altman et al., “Analysing data and undertaking meta-analyses,” in Cochrane Handbook for Systematic Reviews of Interventions, pp. 243–296, John Wiley and Sons, Chichester, UK, 2008. View at Google Scholar
  26. K. Thorlund, S. D. Walter, B. C. Johnston, T. A. Furukawa, and G. H. Guyatt, “Pooling health-related quality of life outcomes in meta-analysis—a tutorial and review of methods for enhancing interpretability,” Research Synthesis Methods, vol. 2, no. 3, pp. 188–203, 2011. View at Google Scholar
  27. A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” Italian Journal of Public Health, vol. 62, no. 10, pp. e1–e34, 2009. View at Google Scholar · View at Scopus
  28. D. Moher, J. Tetzlaff, A. Liberati, and D. G. Altman, “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” PLoS Medicine, vol. 6, no. 7, Article ID e1000100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bax, N. Ikeda, N. Fukui, Y. Yaju, H. Tsuruta, and K. G. M. Moons, “More than numbers: the power of graphs in meta-analysis,” American Journal of Epidemiology, vol. 169, no. 2, pp. 249–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Huf, K. Kalcher, G. Pail, M. E. Friedrich, P. Filzmoser, and S. Kasper, “Meta-analysis: fact or fiction? How to interpret meta-analyses,” World Journal of Biological Psychiatry, vol. 12, no. 3, pp. 188–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Ryan, “Replication in field biology: the case of the frog-eating bat,” Science, vol. 334, no. 6060, pp. 1229–1230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. H. Hurlbert, “The ancient black art and transdisciplinary extent of pseudoreplication,” Journal of Comparative Psychology, vol. 123, no. 4, pp. 434–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. H. Hurlbert, “Pseudoreplication and the design of ecological field experiments,” Ecological Monographs, vol. 54, no. 2, pp. 187–211, 1984. View at Google Scholar
  34. R. Jakuš, M. Blaženec, and O. Vojtěch, “Use of anti-attractants in specific conditions of protected areas,” Folia Oecologica, vol. 38, no. 1, pp. 46–51, 2011. View at Google Scholar · View at Scopus
  35. B. J. Bentz, S. Kegley, K. Gibson, and R. Thier, “A test of high-dose verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks,” Journal of Economic Entomology, vol. 98, no. 5, pp. 1614–1621, 2005. View at Google Scholar · View at Scopus
  36. J. H. Borden, A. L. Birmingham, and J. S. Burleigh, “Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees,” Forestry Chronicle, vol. 82, no. 4, pp. 579–590, 2006. View at Google Scholar · View at Scopus
  37. J. J. Deeks and J. P. T. Higgins, (2010, 2012-01-15). Statistical algorithms in Review Manager 5, http://ims.cochrane.org/revman/documentation/Statistical-methods-in-RevMan-5.pdf.
  38. M. Borenstein, L. V. Hedges, J. Higgins, and H. R. Rothstein, “A basic introduction to fixed-effect and random-effects models for meta-analysis,” Research Synthesis Methods, vol. 1, no. 2, pp. 97–111, 2010. View at Google Scholar
  39. J. H. Borden, G. R. Sparrow, and N. L. Gervan, “Operational success of verbenone against the mountain pine beetle in a rural community,” Arboriculture and Urban Forestry, vol. 33, no. 5, pp. 318–324, 2007. View at Google Scholar · View at Scopus
  40. R. Jakuš, F. Schlyter, Q. H. Zhang et al., “Overview of development of an anti-attractant based technology for spruce protection against Ips typographus: from past failures to future success,” Anzeiger für Schädlingskunde, vol. 76, no. 4, pp. 89–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Chinn, “A simple method for converting an odds ratio to effect size for use in meta-analysis,” Statistics in Medicine, vol. 19, no. 22, pp. 3127–3131, 2000. View at Google Scholar · View at Scopus
  42. Z. Szendrei and C. Rodriguez-Saona, “A meta-analysis of insect pest behavioral manipulation with plant volatiles,” Entomologia Experimentalis et Applicata, vol. 134, no. 3, pp. 201–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Rücker, G. Schwarzer, J. R. Carpenter, and M. Schumacher, “Undue reliance on I2 in assessing heterogeneity may mislead,” BMC Medical Research Methodology, vol. 8, no. 1, article 79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Borden, L. J. Chong, T. J. Earle, and D. P. W. Huber, “Protection of lodgepole pine from attack by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) using high doses of verbenone in combination with nonhost bark volatiles,” Forestry Chronicle, vol. 79, no. 3, pp. 685–691, 2003. View at Google Scholar · View at Scopus
  45. N. E. Gillette, N. Erbilgin, J. N. Webster et al., “Aerially applied verbenone-releasing laminated flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho,” Forest Ecology and Management, vol. 257, no. 5, pp. 1405–1412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Jakus, L. Zajíčkova, P. Cudlín et al., “Landscape-scale Ips typographus attack dynamics: from monitoring plots to GIS-based disturbance models,” IForest, vol. 4, pp. 256–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Progar, “Five-year operational trial of verbenone to deter mountain pine beetle (Dendroctonus ponderosae; Coleoptera: Scolytidae) attack of lodgepole pine (Pinus contorta),” Environmental Entomology, vol. 34, no. 6, pp. 1402–1407, 2005. View at Google Scholar · View at Scopus
  48. C. Schiebe, M. Blaženec, R. Jakuš, C. R. Unelius, and F. Schlyter, “Semiochemical diversity diverts bark beetle attacks from Norway spruce edges,” Journal of Applied Entomology, vol. 135, no. 10, pp. 715–786, 2011. View at Google Scholar · View at Scopus
  49. M. Marvier, “Using meta-analysis to inform risk assessment and risk management,” Journal für Verbraucherschutz und Lebensmittelsicherheit, vol. 6, supplement 1, pp. s113–s118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. McManus, S. Wilson, B. C. Delaney et al., “Review of the usefulness of contacting other experts when conducting a literature search for systematic reviews,” British Medical Journal, vol. 317, no. 7172, pp. 1562–1563, 1998. View at Google Scholar · View at Scopus
  51. C. K. Boone, B. H. Aukema, J. Bohlmann, A. L. Carroll, and K. F. Raffa, “Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species,” Canadian Journal of Forest Research, vol. 41, no. 6, pp. 1174–1188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. R. Clarke, S. M. Salom, R. F. Billings et al., “A scentsible approach to controlling southern pine beetles. Two new tactics using verbenone,” Journal of Forestry, vol. 97, no. 7, pp. 26–31, 1999. View at Google Scholar · View at Scopus
  53. M. N. Andersson, M. Binyameen, and F. Schlyter, “Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth: a smaller scale of action in the moth,” Journal of Chemical Ecology, vol. 37, no. 8, pp. 899–911, 2011. View at Google Scholar
  54. C. J. Fettig, S. R. McKelvey, C. P. Dabney, R. R. Borys, and D. P. W. Huber, “Response of Dendroctonus brevicomis to different release rates of nonhost angiosperm volatiles and verbenone in trapping and tree protection studies,” Journal of Applied Entomology, vol. 133, no. 2, pp. 143–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. D. P. W. Huber and J. H. Borden, “Protection of lodgepole pines from mass attack by mountain pine beetle, Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone,” Entomologia Experimentalis et Applicata, vol. 99, no. 2, pp. 131–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. K. F. Raffa and A. Berryman, “Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms,” Environmental Entomology, vol. 11, pp. 486–492, 1982. View at Google Scholar
  57. C. Schiebe, A. Hammerbacher, G. Birgersson et al., “Inducibility of chemical defences in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle,” Oecologia, vol. 170, no. 1, pp. 183–198, 2012. View at Publisher · View at Google Scholar
  58. T. Zhao, P. Krokene, J. Hu et al., “Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner,” PLoS ONE, vol. 6, no. 10, Article ID e26649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. N. Andersson, M. C. Larsson, M. Blaženec, R. Jakuš, Q. H. Zhang, and F. Schlyter, “Peripheral modulation of pheromone response by inhibitory host compound in a beetle,” Journal of Experimental Biology, vol. 213, no. 19, pp. 3332–3339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. N. Andersson, J. M. Bengtsson, E. Grosse-Wilde et al., “Olfactory receptors in Ips typographus: transcriptome from antenna analysed and preliminary compared to Dendroctonus ponderosae and Tribolium castaneum (Coleoptera: Curculionidae & Tenebrionidae),” in Proceedings of the Genetics of Bark Beetles and Associated Microorganisms, Sopron, Hungary, 2011.
  61. M. N. Andersson, M. C. Larsson, and F. Schlyter, “Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors,” Journal of Insect Physiology, vol. 55, no. 6, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. N. Andersson, “Mechanisms of odor coding in coniferous bark beetles: from neuron to behavior and application,” Psyche, vol. 2012, Article ID 149572, 14 pages, 2012. View at Publisher · View at Google Scholar
  63. T. Aw, K. Schlauch, C. I. Keeling et al., “Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies,” BMC Genomics, vol. 11, no. 1, article e215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. I. Keeling, H. Henderson, M. Li et al., “Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests,” Insect Biochemistry and Molecular Biology, vol. 42, no. 8, pp. 525–536, 2012. View at Publisher · View at Google Scholar
  65. S. Gripenberg, P. J. Mayhew, M. Parnell, and T. Roslin, “A meta-analysis of preference-performance relationships in phytophagous insects,” Ecology Letters, vol. 13, no. 3, pp. 383–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. H. Zhang and F. Schlyter, “Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus,” Oikos, vol. 101, no. 2, pp. 299–310, 2003. View at Publisher · View at Google Scholar · View at Scopus