Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 415183, 9 pages
http://dx.doi.org/10.1155/2012/415183
Research Article

A Survey of Ant Species in Three Habitats at Mount St. Helens National Volcanic Monument

Department of Biology, Anne Arundel Community College, Arnold, MD 21012, USA

Received 18 May 2012; Revised 16 July 2012; Accepted 7 August 2012

Academic Editor: David G. James

Copyright © 2012 Jessamy J. Rango. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Swanson and J. J. Major, “Physical events, environments, and geological-ecological interactions at Mount St. Helens: March 1980–2004,” in Ecological Responses to the 1980 Eruption of Mount St. Helens, V. H. Dale, F. J. Swanson, and C. M. Crisafulli, Eds., pp. 27–44, Springer, New York, NY, USA, 2005. View at Google Scholar
  2. V. H. Dale, F. J. Swanson, and C. M. Crisafulli, Eds., Ecological Responses to the 1980 Eruption of Mount St. Helens, Springer, New York, NY, USA, 2005.
  3. J. S. Edwards, “Arthropods as pioneers: recolonization of the blast zone on Mt. St. Helens,” Northwest Environmental Journal, vol. 2, no. 1, pp. 63–73, 1986. View at Google Scholar · View at Scopus
  4. P. M. Sugg and J. S. Edwards, “Pioneer aeolian community development on pyroclastic flows after the eruption of Mount St. Helens, Washington, U.S.A,” Arctic and Alpine Research, vol. 30, no. 4, pp. 400–407, 1998. View at Google Scholar · View at Scopus
  5. D. M. Wood and R. del Moral, “Mechanisms of early primary succession in subalpine habitats on Mount St. Helens,” Ecology, vol. 68, no. 4, pp. 780–790, 1987. View at Google Scholar · View at Scopus
  6. J. S. Edwards and P. M. Sugg, “Arthropods as pioneers in the regeneration of life on the pyroclastic-flow deposits of Mount St. Helens,” in Ecological Responses to the 1980 Eruption of Mount St. Helens, V. H. Dale, F. J. Swanson, and C. M. Crisafulli, Eds., pp. 127–138, Springer, New York, NY, USA, 2005. View at Google Scholar
  7. M. Kaspari and J. D. Majer, “Using ants to monitor environmental change,” in Ants: Standard Methods for Measuring and Monitoring Biodiversity, D. Agosti, J. D. Majer, L. E. Alonso, and T. R. Schultz, Eds., pp. 89–98, Smithsonian Institution Press, Washington, DC, USA, 2000. View at Google Scholar
  8. United States Department of Agriculture, “SNOTEL SITE 22C12S-spirit lake,” 2012, http://www.or.nrcs.usda.gov/snow/maps/sthelens.html.
  9. C. Dytham, Choosing and Using Statistics: A Biologist's Guide, Blackwell, Malden, MA, USA, 2003.
  10. A. E. Magurran, Ecological Diversity and Its Measurement, Princeton University Press, Princeton, NJ, USA, 1988.
  11. P. M. Sugg, Arthropod Populations at Mount St. Helens: Survival and Revival [Dissertation], University of Washington, WA, USA, 1989.
  12. B. Bolton, “Species: Myrmica lobifrons,” 2012, http://www.antweb.org/description.do?rank=species&genus=myrmica&name=lobifrons&project=illinoisants.
  13. W. S. Creighton, “The ants of North America,” Bulletin of the Museum of Comparative Zoology, vol. 104, pp. 1–585, 1950. View at Google Scholar
  14. B. L. Fisher and S. P. Cover, Ants of North America: A Guide to the Genera, University of California Press, Berkeley, CA, USA, 2007.
  15. S. Harrison and C. Wilcox, “Evidence that predator satiation may restrict the spatial spread of a tussock moth (Orgyia vetusta) outbreak,” Oecologia, vol. 101, no. 3, pp. 309–316, 1995. View at Google Scholar · View at Scopus
  16. I. D. Hodkinson, N. R. Webb, and S. J. Coulson, “Primary community assembly on land—the missing stages: why are the heterotrophic organisms always there first?” Journal of Ecology, vol. 90, no. 3, pp. 569–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. C. Wheeler and J. Wheeler, “The natural history of Manica (Hymenoptera: Formicidae),” Journal of the Kansas Entomological Society, vol. 43, no. 2, pp. 129–162, 1970. View at Google Scholar
  18. M. F. Jurgensen, A. J. Storer, and A. C. Risch, “Red wood ants in North America,” Annales Zoologici Fennici, vol. 42, no. 3, pp. 235–242, 2005. View at Google Scholar · View at Scopus
  19. W. W. Murdoch, F. C. Evans, and C. H. Peterson, “Diversity and pattern in plants and insects,” Ecology, vol. 53, no. 5, pp. 819–829, 1972. View at Google Scholar
  20. P. N. Fergnani, P. Sackmann, and A. Ruggiero, “Richness-environment relationships in epigaeic ants across the Subantarctic-Patagonian transition zone,” Insect Conservation and Diversity, vol. 3, pp. 278–290, 2010. View at Google Scholar
  21. M. C. M. Simao, S. L. Flory, and J. A. Rudgers, “Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels,” Oikos, vol. 119, no. 10, pp. 1553–1562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kaspari, “A primer on ant ecology,” in Ants: Standard Methods for Measuring and Monitoring Biodiversity, D. Agosti, J. D. Majer, L. E. Alonso, and T. R. Schultz, Eds., pp. 9–24, Smithsonian Institution Press, Washington, DC, USA, 2000. View at Google Scholar
  23. A. N. Andersen, “Species diversity and temporal distribution of ants in the semi- arid mallee region of northwestern Victoria,” Australian Journal of Ecology, vol. 8, no. 2, pp. 127–137, 1983. View at Google Scholar · View at Scopus
  24. B. T. Bestelmeyer, “Stress tolerance in some Chacoan dolichoderine ants: implications for community organization and distribution,” Journal of Arid Environments, vol. 35, no. 2, pp. 297–310, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Oliveira, T. M. C. Della Lucia, E. F. Morato, M. A. Amaro, and C. G. S. Marinho, “Vegetation structure and richness: effects on ant fauna of the Amazon—Acre, Brazil (Hymenoptera: Formicidae),” Sociobiology, vol. 57, no. 3, pp. 471–486, 2011. View at Google Scholar · View at Scopus
  26. F. V. da Costa, F. de Siqueira Neves, J. de Oliveira Silva, and M. Fagundes, “Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae),” Arthropod-Plant Interactions, vol. 5, no. 1, pp. 9–18, 2011. View at Publisher · View at Google Scholar · View at Scopus