Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 590619, 9 pages
http://dx.doi.org/10.1155/2012/590619
Review Article

Hylastes ater (Curculionidae: Scolytinae) Affecting Pinus radiata Seedling Establishment in New Zealand

1Silver Bullet Forest Research, P.O. Box 56-491, Dominion Rd, Auckland, New Zealand
2Bio-Protection Research Centre, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand
3Vineland Research and Innovation Centre, 4890 Victoria Avenue N., P.O. Box 4000, Vineland Station, ON, Canada L0R 2E0

Received 5 August 2011; Revised 20 November 2011; Accepted 22 December 2011

Academic Editor: John A. Byers

Copyright © 2012 Stephen D. Reay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Clark, “The pine-bark beetle, Hylastes ater, in New Zealand,” New Zealand Journal of Science and Technology, vol. 14, pp. 1–20, 1932. View at Google Scholar
  2. R. H. Milligan, “Hylastes ater (Paykull) (Coleoptera: Scolytidae),” Forest and timber insects in New Zealand 29, Forest Research Institute, New Zealand Forest Service, Rotorua, New Zealand, 1978. View at Google Scholar
  3. S. D. Reay and P. J. Walsh, “The incidence of seedling attack and mortality by Hylastes ater (coleoptera: Scolytidae) in second rotation Pinus radiata forests in the Central North Island, New Zealand,” New Zealand Journal of Forestry, vol. 47, no. 2, pp. 19–23, 2002. View at Google Scholar · View at Scopus
  4. G. Örlander, U. Nilsson, and G. Nordlander, “Pine weevil abundance on clear-cuttings of different ages: a 6-year study using pitfall traps,” Scandinavian Journal of Forest Research, vol. 12, no. 3, pp. 225–240, 1997. View at Google Scholar · View at Scopus
  5. S. R. Leather, K. R. Day, and A. N. Salisbury, “The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): a problem of dispersal?” Bulletin of Entomological Research, vol. 89, no. 1, pp. 3–16, 1999. View at Google Scholar · View at Scopus
  6. S. D. Reay and P. J. Walsh, “Observations on the flight activity of Hylastes ater (Curculionidae: Scolytinae) and Hylurgus ligniperda (Curculionidae: Scolytinae) in Pinus radiata forests in the central North Island, New Zealand,” New Zealand Entomologist, vol. 24, no. 1, pp. 79–85, 2001. View at Google Scholar
  7. J. Bain, “Hylurgus ligniperda (Fabricius) (Coleoptera: Scolytidae),” Forest and Timber Insects in New Zealand 18, Forest Research Institute, New Zealand Forest Service, Rotorua, New Zealand, 1977. View at Google Scholar
  8. S. D. Reay, Aspects of the ecology and behaviour of Hylastes ater (Coleoptera: Scolytidae) in second rotation Pinus radiata forests in the central North Island, and options for control, Ph.D. thesis, University of Canterbury, Canterbury, New Zealand, 2001.
  9. M. C. Birch, “Chemical communication in pine bark beetles,” American Scientist, vol. 66, no. 4, pp. 409–419, 1978. View at Google Scholar · View at Scopus
  10. K. D. Klepzig, K. F. Raffa, and E. B. Smalley, “Association of an insect-fungal complex with red pine decline in Wisconsin,” Forest Science, vol. 37, no. 4, pp. 1119–1139, 1991. View at Google Scholar
  11. K. F. Raffa, “Induced defensive reactions in conifer-bark beetle systems,” in Phytochemical Induction by Herbivores, D. W. Tallamy and M. J. Raupp, Eds., pp. 246–276, John Wiley & Sons, New York, NY, USA, 1991. View at Google Scholar
  12. T. D. Paine, K. F. Raffa, and T. C. Harrington, “Interactions among scolytid bark beetles, their associated fungi, and live host conifers,” Annual Review of Entomology, vol. 42, pp. 179–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Six and M. J. Wingfield, “The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm,” Annual Review of Entomology, vol. 56, pp. 255–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Butcher, “The ecology of fungi infecting untreated sapwood of Pinus radiata,” Canadian Journal of Botany, vol. 46, no. 12, pp. 1557–1589, 1968. View at Google Scholar
  15. R. L. Farrell, S. J. Kay, E. Hadar, Y. Hader, R. A. Blanchette, and T. C. Harrington, “Survey of sapstain in New Zealand—the causes and a potential anti-sapstain solution,” in Biology and Prevention of Sapstain, B. Kreber, Ed., pp. 25–29, Forest Products Society No. 7273, Madison, Wis, USA, 1998. View at Google Scholar
  16. J. M. Thwaites, R. L. Farrell, K. Hata, P. Carter, and M. Lausberg, “Sapstain fungi on Pinus radiata logs—from New Zealand forest to export in Japan,” Journal of Wood Science, vol. 50, no. 5, pp. 459–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Thwaites, R. L. Farrell, S. M. Duncan et al., “Survey of potential sapstain fungi on Pinus radiata in New Zealand,” New Zealand Journal of Botany, vol. 43, no. 3, pp. 653–663, 2005. View at Google Scholar · View at Scopus
  18. M. J. Wingfield and J. N. Gibbs, “Leptographium and Graphium species associated with pine-infesting bark beetles in England,” Mycological Research, vol. 95, no. 11, pp. 1257–1260, 1991. View at Google Scholar
  19. K. A. Seifert, “Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis,” in Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity, M. J. Winfield, K. A. Seifert, and J. F. Webber, Eds., pp. 141–151, American Phytopathological Society, St. Paul, Minn, USA, 1993. View at Google Scholar
  20. P. Dowding, “Effects of felling time and insecticide treatment on the interrelationships of fungi and arthropods in pine logs,” Oikos, vol. 24, no. 3, pp. 422–429, 1973. View at Google Scholar · View at Scopus
  21. J. N. Gibbs, “The biology of Ophiostomatoid fungi causing sapstain in trees and freshly cut logs,” in Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity, M. J. Winfield, K. A. Seifert, and J. F. Webber, Eds., pp. 153–160, American Phytopathological Society, St. Paul, Minn, USA, 1993. View at Google Scholar
  22. M. MacKenzie and M. Dick, “Verticicladiella root disease,” Forest Pathology in New Zealand 6, Forest Research Institute, New Zealand Forest Service, Rotorua, New Zealand, 1984. View at Google Scholar
  23. M. J. Wingfield, P. Capretti, and M. Mackenzie, “Leptographium spp. as root pathogens of conifers: an international perspective,” in Leptographium Root Diseases of Conifers, T. C. Harrington and F. R. Cobb Jr, Eds., pp. 113–128, American Phytopathological Society, St. Paul, Minn, USA, 1988. View at Google Scholar
  24. S. D. Reay, P. J. Walsh, A. Ram, and R. L. Farrell, “The invasion of Pinus radiata seedlings by sapstain fungi, following attack by the Black Pine Bark Beetle, Hylastes ater (Coleoptera: Scolytidae),” Forest Ecology and Management, vol. 165, no. 1–3, pp. 47–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Jacobs, M. J. Wingfield, B. D. Wingfield, and Y. Yamaoka, “Comparison of Ophiostoma huntii and O. europhioides and description of O. aenigmaticum sp. nov,” Mycological Research, vol. 102, no. 3, pp. 289–294, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. T. C. Harrington, “Leptographium species, their distributions, hosts and insect vectors,” in Leptographium Root Diseases of Confiers, T. C. Harrington and F. W. Cobb Jr., Eds., pp. 1–39, American Phytopathological Society, St. Paul, Minn, USA, 1998. View at Google Scholar
  27. T. C. Harrington, “Biology and taxonomy of fungi associated with bark beetles,” in Beetle-Pathogen Interactions in Conifer Forests, T. D. Schowalter and G. M. Filip, Eds., pp. 37–58, Academic Press, London, UK, 1993. View at Google Scholar
  28. T. C. Harrington, “Diseases of conifers caused by species of Ophiostoma and Leptographium,” in Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity, M. J. Winfield, K. A. Seifert, and J. F. Webber, Eds., pp. 161–172, American Phytopathological Society, St. Paul, Minn, USA, 1993. View at Google Scholar
  29. D. Malloch and M. Blackwell, “Dispersal biology of the Ophiostomatoid fungi,” in Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity, M. J. Winfield, K. A. Seifert, and J. F. Webber, Eds., pp. 195–205, American Phytopathological Society, St. Paul, Minn, USA, 1993. View at Google Scholar
  30. M. J. Wingfield and P. S. Knox-Davis, “Root disease, associated with Verticicladiella alacris, of pines in South Africa,” Plant Disease, vol. 64, no. 1, pp. 569–571, 1980. View at Google Scholar
  31. J. J. Witcosky and E. M. Hansen, “Root-colonising insects recovered from Douglas-fir in various stages of decline due to black-stain root disease,” Phytopathology, vol. 75, pp. 399–402, 1985. View at Google Scholar
  32. J. J. Witcosky, T. D. Schowalter, E. M. Hansen, and M. Everett, “Hylastes nigrinius (Coleoptera; Scolytidae), Pissodes fasiatus, and Steremnius carinatus (Coleoptera: Curculionidae) as vectors of black-stain root disease of Douglas-fir,” Environmental Entomology, vol. 15, no. 5, pp. 1090–1095, 1986. View at Google Scholar
  33. W. R. Jacobi, “Potential insect vectors of the black stain root disease pathogen on Southern Vancouver Island,” Journal of the Entomological Society of British Columbia, vol. 89, pp. 54–56, 1992. View at Google Scholar
  34. S. D. Reay, J. M. Thwaites, and R. L. Farrell, “A survey of Ophiostoma species vectored by Hylastes ater to pine seedlings in New Zealand,” Forest Pathology, vol. 35, no. 2, pp. 105–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. B. K. Bakshi, “Development of perithecia and reproductive structures in two species of Ceratocystis,” Annals of Botany, vol. 15, no. 1, pp. 53–62, 1951. View at Google Scholar · View at Scopus
  36. B. K. Bakshi, “Studies on four species of Ceratocystis, with a discussion on fungi causing sap-stain in Britain,” Mycological Papers, vol. 35, pp. 1–16, 1951. View at Google Scholar
  37. A. Mathiesen-Käärik, “Studies on the ecology, taxonomy and physiology of Swedish insect-associated blue stain fungi, especially the genus Ceratocystis,” Oikos, no. 1, pp. 1–25, 1960. View at Google Scholar
  38. S. D. Reay, J. M. Thwaites, R. L. Farrell, and T. R. Glare, “The lack of persistence of Ophiostomataceae fungi in Pinus radiata three years after damage by the bark beetle Hylastes ater, and the subsequent colonization by Sphaeropsis sapinea,” Forest Ecology and Management, vol. 233, no. 1, pp. 149–152, 2006. View at Google Scholar
  39. L. R. Castro, A. D. Austin, and M. Dowton, “Contrasting rates of mitochondrial molecular evolution in parasitic diptera and hymenoptera,” Molecular Biology and Evolution, vol. 19, no. 7, pp. 1100–1113, 2002. View at Google Scholar · View at Scopus
  40. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Huelsenbeck and F. Ronquist, “MRBAYES: bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001. View at Google Scholar · View at Scopus
  42. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Systematic Biology, vol. 53, no. 5, pp. 793–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. A. Nylander, MrModeltest 2.2, Department of Systematic Zoology, Uppsala University, Uppsala, Sweden, 2004.
  45. D. L. Swofford, 2002 PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, Mass, USA, 2002.
  46. F. Rodriguez, J. L. Oliver, A. Marin, and J. R. Medina, “The general stochastic model of nucleotide substitution,” Journal of Theoretical Biology, vol. 142, no. 4, pp. 485–501, 1990. View at Google Scholar · View at Scopus
  47. Z. Yang, N. Goldman, and A. Friday, “Comparison of models for nucleotide substitution used in maximum- likelihood phylogenetic estimation,” Molecular Biology and Evolution, vol. 11, no. 2, pp. 316–324, 1994. View at Google Scholar · View at Scopus
  48. R. D. M. page, “TreeView: an application to display phylogenetic trees on personal computers,” Computer Applications in the Biosciences, vol. 12, no. 4, pp. 357–358, 1996. View at Google Scholar · View at Scopus
  49. S. D. Reay and P. J. Walsh, “A carbosulfan insecticide to protect pine seedlings from Hylastes ater (Coleoptera: Scolytidae) damage,” New Zealand Plant Protection, vol. 55, pp. 80–84, 2002. View at Google Scholar
  50. S. Balazy, “Analysis of bark beetle mortality in spruce forests in Poland,” Ekologia Polska A, vol. 33, no. 16, pp. 657–687, 1968. View at Google Scholar
  51. R. Wegensteiner, “Pathogens in bark beetles,” in Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis, F. Lieutier, K. Day, A. Battisti, J. C. Grégoire, and H. Evans, Eds., pp. 291–313, Kluwer Academic, Dodrecht, The Netherlands, 2004. View at Google Scholar
  52. D. Chandler, G. Davidson, J. K. Pell, B. V. Ball, K. Shaw, and K. D. Sunderland, “Fungal biocontrol of acari,” Biocontrol Science and Technology, vol. 10, no. 4, pp. 357–384, 2000. View at Google Scholar · View at Scopus
  53. G. Zimmermann, “Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii,” Biocontrol Science and Technology, vol. 17, no. 6, pp. 553–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. N. V. Meyling and J. Eilenberg, “Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control,” Biological Control, vol. 43, no. 2, pp. 145–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Quesada-Moraga, J. A. Navas-Cortés, E. A. A. Maranhao, A. Ortiz-Urquiza, and C. Santiago-Álvarez, “Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils,” Mycological Research, vol. 111, no. 8, pp. 947–966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. F. E. Vega, F. Posada, M. Catherine Aime, M. Pava-Ripoll, F. Infante, and S. A. Rehner, “Entomopathogenic fungal endophytes,” Biological Control, vol. 46, no. 1, pp. 72–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. R. Glare, S. D. Reay, T. L. Nelson, and R. Moore, “Beauveria caledonica is a naturally occurring pathogen of forest beetles,” Mycological Research, vol. 112, no. 3, pp. 352–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Moore, “Public and private enemy no.1, A new approach to dealing with the large pine weevil (Hylobius abietis),” Forestry and British Timber, vol. 26, no. 4, pp. 12–15, 1997. View at Google Scholar
  59. S. D. Reay, M. Brownbridge, N. J. Cummings et al., “Isolation and characterization of Beauveria spp. associated with exotic bark beetles in New Zealand Pinus radiata plantation forests,” Biological Control, vol. 46, no. 3, pp. 484–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. W. Doberski and H. T. Tribe, “Isolation of entomopathogenic fungi from elm bark and soil with reference to ecology of Beauveria bassiana and Metarhizium anisopliae,” Transactions of the British Mycological Society, vol. 74, no. 1, pp. 95–100, 1980. View at Google Scholar
  61. R. Wegensteiner, “Laboratory evaluation of Beauveria bassiana (Bals.) Vuill. against the bark beetle, Ips typographus (L.) (Coleoptera, Scolytidae),” IOBC/WPRS Bulletin, vol. 19, pp. 186–189, 1996. View at Google Scholar
  62. R. A. Prazak, “Laboratory evaluation of Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) against Trypodendron lineatum. Oliv. (Coleoptera, Scolytidae),” Journal of Plant Diseases and Protection, vol. 104, no. 5, pp. 459–465, 1997. View at Google Scholar
  63. J. Kreutz, G. Zimmermann, H. Marohn, O. Vaupel, and G. Mosbacher, “Preliminary investigations on the use of Beauveria bassiana (Bals.) Vuill. and other control methods against the bark beetle, Ips typographus L. (Col., Scolytidae) in the field,” IOBC/WPRS-Bulletin, vol. 23, pp. 167–173, 2000. View at Google Scholar
  64. J. Kreutz, O. Vaupel, and G. Zimmermann, “Efficacy of Beauveria bassiana (Bals.) Vuill. against the spruce bark beetle, Ips typographus L., in the laboratory under various conditions,” Journal of Applied Entomology, vol. 128, no. 6, pp. 384–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Kreutz, G. Zimmermann, and O. Vaupel, “Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae), in the laboratory and under field conditions,” Biocontrol Science and Technology, vol. 14, no. 8, pp. 837–848, 2004. View at Google Scholar
  66. M. Brownbridge, S. D. Reay, and N. J. Cummings, “Association of Entomopathogenic fungi with exotic bark beetles in New Zealand pine plantations,” Mycopathologia, vol. 169, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. D. Reay, M. Brownbridge, B. Gicquel, N. J. Cummings, and T. L. Nelson, “Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests,” Biological Control, vol. 54, no. 1, pp. 52–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. B. H. Ownley, M. R. Griffin, W. E. Klingeman, K. D. Gwinn, J. K. Moulton, and R. M. Pereira, “Beauveria bassiana: endophytic colonization and plant disease control,” Journal of Invertebrate Pathology, vol. 98, no. 3, pp. 267–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. B. H. Ownley, K. D. Gwinn, and F. E. Vega, “Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution,” BioControl, vol. 55, no. 1, pp. 113–128, 2010. View at Publisher · View at Google Scholar · View at Scopus