Table of Contents Author Guidelines Submit a Manuscript
Rehabilitation Research and Practice
Volume 2011, Article ID 590780, 7 pages
http://dx.doi.org/10.1155/2011/590780
Research Article

Validation of a Biofeedback System for Wheelchair Propulsion Training

1Biomechanics Laboratory, MAX Mobility, LLC, 5425 Mount View Parkway, Antioch, TN 37013, USA
2Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA

Received 9 April 2011; Accepted 2 July 2011

Academic Editor: Jeffrey Jutai

Copyright © 2011 Liyun Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Wolfe, R. Waters, and H. J. Hislop, “Influence of floor surface on the energy cost of wheelchair propulsion,” Physical Therapy, vol. 57, no. 9, pp. 1022–1027, 1977. View at Google Scholar · View at Scopus
  2. G. Hildebrandt, E. D. Voigt, D. Bahn, B. Berendes, and J. Kroger, “Energy cost of propelling a wheelchair at various speeds: cardiac response and the affect of steering accuracy,” Archives of Physical Medicine and Rehabilitation, vol. 51, no. 3, pp. 131–136, 1970. View at Google Scholar
  3. R. M. Glaser, M. N. Sawka, L. L. Laubach, and A. G. Suryaprasad, “Metabolic and cardiopulmonary responses to wheelchair and bicycle ergometry,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 46, no. 6, pp. 1066–1070, 1979. View at Google Scholar · View at Scopus
  4. C. E. Brubaker and S. Ross, “Static and dynamic comparisons of selected handrims for wheelchair propulsion,” in Wheelchair Mobility 1976–1981, W. Stamp and C. A. McLaurin, Eds., pp. 28–31, Rehabilitation Engineering Center, University of Virginia, 1976. View at Google Scholar
  5. L. H. V. van der Woude, H. E. J. Veeger, and R. H. Rozendal, “Propulsion technique in hand rim wheelchair ambulation,” Journal of Medical Engineering and Technology, vol. 13, no. 1-2, pp. 136–141, 1989. View at Google Scholar · View at Scopus
  6. K. Samuelsson, H. Larsson, and H. Tropp, “A wheelchair ergometer with a device for isokinetic torque measurement,” Scandinavian Journal of Rehabilitation Medicine, vol. 21, no. 4, pp. 205–208, 1989. View at Google Scholar · View at Scopus
  7. D. J. Sanderson and H. J. Sommer, “Kinematic features of wheelchair propulsion,” Journal of Biomechanics, vol. 18, no. 6, pp. 423–429, 1985. View at Google Scholar · View at Scopus
  8. R. Niesing, F. Eijskoot, R. Kranse et al., “Computer-controlled wheelchair ergometer,” Medical and Biological Engineering and Computing, vol. 28, no. 4, pp. 329–338, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Mâsse, M. Lamontagne, and M. D. O'Riain, “Biomechanical analysis of wheelchair propulsion for various seating positions,” Journal of Rehabilitation Research and Development, vol. 29, no. 3, pp. 12–28, 1992. View at Google Scholar · View at Scopus
  10. R. A. Cooper, K. T. Asato, R. N. Robertson, and J. F. Ster, “2-dimensional kinetic analysis of manual wheelchair propulsion with an improved SMARTwheel,” in Proceedings of the 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '92), pp. 1544–1545, Paris, France, October-November 1992.
  11. K. T. Asato, R. A. Cooper, R. N. Robertson, and J. F. Ster, “SMARTwheels: development and testing of a system for measuring manual wheelchair propulsion dynamics,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 12, pp. 1320–1324, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. H. W. Wu, L. J. Berglund, F. C. Su et al., “An instrumented wheel for kinetic analysis of wheelchair propulsion,” Journal of Biomechanical Engineering, vol. 120, no. 4, pp. 533–535, 1998. View at Google Scholar · View at Scopus
  13. W. Limroongreungrat, Y. T. Wang, L. S. Chang, M. D. Geil, and J. T. Johnson, “An instrumented wheel system for measuring 3-D pushrim kinetics during racing wheelchair propulsion,” Research in Sports Medicine, vol. 17, no. 3, pp. 182–194, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. W. J. Hurd, M. M. B. Morrow, K. R. Kaufman, and K. N. An, “Wheelchair propulsion demands during outdoor community ambulation,” Journal of Electromyography and Kinesiology, vol. 19, no. 5, pp. 942–947, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. R. E. Cowan, M. L. Boninger, B. J. Sawatzky, B. D. Mazoyer, and R. A. Cooper, “Preliminary outcomes of the SmartWheel Users' Group database: a proposed framework for clinicians to objectively evaluate manual wheelchair propulsion,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 2, pp. 260–268, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. M. Kwarciak, S. A. Sisto, M. Yarossi, R. Price, E. Komaroff, and M. L. Boninger, “Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 1, pp. 20–26, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Gil-Agudo, A. Del Ama-Espinosa, E. Pérez-Rizo, S. Pérez-Nombela, and B. Crespo-Ruiz, “Shoulder joint kinetics during wheelchair propulsion on a treadmill at two different speeds in spinal cord injury patients,” Spinal Cord, vol. 48, no. 4, pp. 290–296, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. C. P. DiGiovine, R. A. Cooper, R. N. Robertson, M. L. Boninger, and S. D. Shimada, “Frequency domain analysis of wheelchair pushrim forces and moments,” in Proceedings of the Rehabilitation Engineering and Assistive Technology Society of North America Annual Conference (RESNA '96), pp. 238–240, Salt Lake City, Utah, USA, 1996.
  19. K. R. Woods, W. M. Richter, R. Rodriguez, and P. W. Axelson, “Removal of dynamic offset signal from load cell instrumented wheels,” in Proceedings of the 27th International Conference on Rehabilitation Engineering and Assistive Technology Society of North America (RESNA '04), Orlando, Fla, USA, June 2004, (CD-ROM).
  20. W. M. Richter, A. M. Kwarciak, L. Guo, and J. T. Turner, “Effects of single-variable biofeedback on wheelchair handrim biomechanics,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 4, pp. 572–577, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. A. M. Kwarciak, J. T. Turner, L. Guo, and W. M. Richter, “Comparing handrim biomechanics for treadmill and overground wheelchair propulsion,” Spinal Cord, vol. 49, no. 3, pp. 457–462, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus