Table of Contents Author Guidelines Submit a Manuscript
Rehabilitation Research and Practice
Volume 2017, Article ID 6842549, 9 pages
https://doi.org/10.1155/2017/6842549
Clinical Study

Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

Federal University of Paraíba, João Pessoa, PB, Brazil

Correspondence should be addressed to Suellen M. Andrade; moc.liamg@edardnanelleus

Received 26 August 2016; Revised 24 November 2016; Accepted 19 December 2016; Published 30 January 2017

Academic Editor: Lumy Sawaki

Copyright © 2017 Suellen M. Andrade et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fusco, F. Assenza, M. Iosa et al., “The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial,” BioMed Research International, vol. 2014, Article ID 547290, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Pavlova, M.-F. Kuo, M. A. Nitsche, and J. Borg, “Transcranial direct current stimulation of the premotor cortex: effects on hand dexterity,” Brain Research, vol. 1576, no. 1, pp. 52–62, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Brunoni, M. A. Nitsche, N. Bolognini et al., “Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions,” Brain Stimulation, vol. 5, no. 3, pp. 175–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Wu, L. Qian, R. D. Zorowitz, L. Zhang, Y. Qu, and Y. Yuan, “Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study,” Archives of Physical Medicine and Rehabilitation, vol. 94, no. 1, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Sousa Nanji, A. Torres Cardoso, J. Costa, and A. Vaz-Carneiro, “Analysis of the cochrane review: interventions for improving upper limb function after stroke. cochrane database syst rev. 2014,11:Cd010820,” Acta Medica Portuguesa, vol. 28, no. 5, pp. 551–553, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Könönen, I. M. Tarkka, E. Niskanen et al., “Functional MRI and motor behavioral changes obtained with constraint-induced movement therapy in chronic stroke,” European Journal of Neurology, vol. 19, no. 4, pp. 578–586, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Rocha, E. Silva, Á. Foerster et al., “The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial,” Disability and Rehabilitation, vol. 38, no. 7, pp. 653–660, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Furlan, A. B. Conforto, L. G. Cohen, and A. Sterr, “Upper limb immobilisation: a neural plasticity model with relevance to poststroke motor rehabilitation,” Neural Plasticity, vol. 2016, Article ID 8176217, 17 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Bolognini, G. Vallar, C. Casati et al., “Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 819–829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. B. Plow, D. A. Cunningham, E. Beall et al., “Effectiveness and neural mechanisms associated with tDCS delivered to premotor cortex in stroke rehabilitation: study protocol for a randomized controlled trial,” Trials, vol. 14, no. 1, article no. 331, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. R. T. Viana, G. E. C. Laurentino, R. J. P. Souza et al., “Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial,” NeuroRehabilitation, vol. 34, no. 3, pp. 437–446, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-C. Wang, C.-P. Wang, P.-Y. Tsai, C.-Y. Hsieh, R.-C. Chan, and S.-C. Yeh, “Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery,” Restorative Neurology and Neuroscience, vol. 32, no. 6, pp. 825–835, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Fregni, P. S. Boggio, C. G. Mansur et al., “Transcranial direct current stimulation of the unaffected hemisphere in stroke patients,” NeuroReport, vol. 16, no. 14, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Teo, M. Muthalib, D. Kidgell et al., “Ipsilateral M1 transcranial direct current stimulation increases excitability of the contralateral M1 during an active motor task: implications for stroke rehabilitation,” Annals of Physical and Rehabilitation Medicine, vol. 58, pp. e1–e2, 2015. View at Publisher · View at Google Scholar
  16. K. Vancleef, R. Meesen, S. P. Swinnen, and H. Fujiyama, “tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task,” Scientific Reports, vol. 6, Article ID 35739, 2016. View at Publisher · View at Google Scholar
  17. A. J. Fagerlund, J. L. Freili, T. L. Danielsen, and P. M. Aslaksen, “No effect of 2 mA anodal tDCS over the M1 on performance and practice effect on grooved pegboard test and trail making test B(1,2,3),” eNeuro, vol. 2, no. 4, Article ID ENEURO.0072-14.2015, 2015. View at Publisher · View at Google Scholar
  18. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology, vol. 20, no. 1, pp. 202–204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Hesse, A. Waldner, J. Mehrholz, C. Tomelleri, M. Pohl, and C. Werner, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 838–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Nouri and S. C. Cramer, “Anatomy and physiology predict response to motor cortex stimulation after stroke,” Neurology, vol. 77, no. 11, pp. 1076–1083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Cunningham, N. Varnerin, A. Machado et al., “Stimulation targeting higher motor areas in stroke rehabilitation: a proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms,” Restorative Neurology and Neuroscience, vol. 33, no. 6, pp. 911–926, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. N. S. Ward and R. S. J. Frackowiak, “The functional anatomy of cerebral reorganisation after focal brain injury,” Journal of Physiology Paris, vol. 99, no. 4–6, pp. 425–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Sattler, B. Acket, N. Raposo et al., “Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke,” Neurorehabilitation and Neural Repair, vol. 29, no. 8, pp. 743–754, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Suzuki and E. Naito, “Neuro-modulation in dorsal premotor cortex facilitates human multi-task ability,” Journal of Behavioral and Brain Science, vol. 2, pp. 372–379, 2012. View at Publisher · View at Google Scholar
  25. R. P. Dum and P. L. Strick, “The origin of corticospinal projections from the premotor areas in the frontal lobe,” Journal of Neuroscience, vol. 11, no. 3, pp. 667–689, 1991. View at Google Scholar · View at Scopus
  26. R. J. Seitz, P. Höflich, F. Binkofski, L. Tellmann, H. Herzog, and H.-J. Freund, “Role of the premotor cortex in recovery from middle cerebral artery infarction,” Archives of Neurology, vol. 55, no. 8, pp. 1081–1088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. Craciunas, W. M. Brooks, R. J. Nudo et al., “Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment,” Neurorehabilitation and Neural Repair, vol. 27, no. 5, pp. 411–420, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-Q. He, R. P. Dum, and P. L. Strick, “Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere,” Journal of Neuroscience, vol. 13, no. 3, pp. 952–980, 1993. View at Google Scholar · View at Scopus
  29. S. Wade and G. Hammond, “Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence,” European Journal of Neuroscience, vol. 41, no. 12, pp. 1597–1602, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. R. P. Dum and P. L. Strick, “Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere,” The Journal of Neuroscience, vol. 25, no. 6, pp. 1375–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Marconi, A. Genovesio, S. Giannetti, M. Molinari, and R. Caminiti, “Callosal connections of dorso-lateral premotor cortex,” European Journal of Neuroscience, vol. 18, no. 4, pp. 775–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. Bonifer, K. M. Anderson, and D. B. Arciniegas, “Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 9, pp. 1867–1873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. F. I. Mahoney and D. W. Barthel, “Functional evaluation: the barthel index,” Maryland State Medical Journal, vol. 14, pp. 61–65, 1965. View at Google Scholar · View at Scopus
  34. A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind, “The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, pp. 13–31, 1975. View at Google Scholar
  35. R. W. Bohannon and M. B. Smith, “Interrater reliability of a modified Ashworth scale of muscle spasticity,” Physical Therapy, vol. 67, no. 2, pp. 206–207, 1987. View at Google Scholar · View at Scopus
  36. H.-M. Chen, C. C. Chen, I.-P. Hsueh, S.-L. Huang, and C.-L. Hsieh, “Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 5, pp. 435–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Medical Research Council of the UK, Aids to the Examination of the Peripheral Nervous System, Memorandum no. 45, Her Majesty's Stationary Office, London, UK, 1976.
  38. S. Schmidt, R. Fleischmann, R. Bathe-Peters, K. Irlbacher, and S. A. Brandt, “Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study,” PLoS ONE, vol. 8, no. 2, Article ID e57425, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. R. W. Homan, J. Herman, and P. Purdy, “Cerebral location of international 10-20 system electrode placement,” Electroencephalography and Clinical Neurophysiology, vol. 66, no. 4, pp. 376–382, 1987. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Boros, C. Poreisz, A. Münchau, W. Paulus, and M. A. Nitsche, “Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans,” European Journal of Neuroscience, vol. 27, no. 5, pp. 1292–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Paus, “Location and function of the human frontal eye-field: a selective review,” Neuropsychologia, vol. 34, no. 6, pp. 475–483, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. J. C. Grotta, E. A. Noser, T. Ro et al., “Constraint-induced movement therapy,” Stroke, vol. 35, no. 11, pp. 2699–2701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. E. B. Plow, D. A. Cunningham, N. Varnerin, and A. Machado, “Rethinking stimulation of the brain in stroke rehabilitation: why higher motor areas might be better alternatives for patients with greater impairments,” Neuroscientist, vol. 21, no. 3, pp. 225–240, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. S. B. Frost, S. Barbay, K. M. Friel, E. J. Plautz, and R. J. Nudo, “Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery,” Journal of Neurophysiology, vol. 89, no. 6, pp. 3205–3214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. C. Stewart, P. Dewanjee, U. Shariff, and S. C. Cramer, “Dorsal premotor activity and connectivity relate to action selection performance after stroke,” Human Brain Mapping, vol. 37, no. 5, pp. 1816–1830, 2016. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Ro, E. Noser, C. Boake et al., “Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke: case reports,” Neurocase, vol. 12, no. 1, pp. 50–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. L. Wolf, P. A. Thompson, C. J. Winstein et al., “The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy,” Stroke, vol. 41, no. 10, pp. 2309–2315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Stevenson, L. Thalman, H. Christie, and W. Poluha, “Constraint-induced movement therapy compared to dose-matched interventions for upper-limb dysfunction in adult survivors of stroke: a systematic review with meta-analysis,” Physiotherapy Canada, vol. 64, no. 4, pp. 397–413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Chew, K.-A. Ho, and C. K. Loo, “Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities,” Brain Stimulation, vol. 8, no. 6, pp. 1130–1137, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. Russell, T. Goodman, R. Pierson et al., “Individual differences in transcranial electrical stimulation current density,” Journal of Biomedical Research, vol. 27, no. 6, pp. 495–508, 2013. View at Publisher · View at Google Scholar · View at Scopus