Table of Contents Author Guidelines Submit a Manuscript
Radiology Research and Practice
Volume 2012 (2012), Article ID 814396, 6 pages
http://dx.doi.org/10.1155/2012/814396
Review Article

Sonography of the Primary Cutaneous Melanoma: A Review

Department of Radiology, Clinica Servet, Faculty of Medicine, University of Chile, Almirante Pastene 150, Providencia, Santiago, Chile

Received 28 July 2011; Revised 11 October 2011; Accepted 13 November 2011

Academic Editor: Christiane A. Voit

Copyright © 2012 Ximena Wortsman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. U. Ekwueme, G. Guy, C. Li, S. H. Rim, P. Parelkar, and S. C. Chen, “The health burden and economic costs of cutaneous melanoma mortality by race/ethnicity-United States, 2000 to 2006,” Journal of the American Academy of Dermatology, vol. 65, supplement 1, no. 5, pp. S133–S143, 2011. View at Publisher · View at Google Scholar · View at PubMed
  2. D. T. Netscher, M. Leong, I. Orengo, D. Yang, C. Berg, and B. Krishnan, “Cutaneous malignancies: melanoma and nonmelanoma types,” Plastic and Reconstructive Surgery, vol. 127, no. 3, pp. 37e–56e, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. M. J. Sladden, C. Balch, D. A. Barzilai et al., “Surgical excision margins for primary cutaneous melanoma,” Cochrane Database of Systematic Reviews, no. 4, p. CD004835, 2009. View at Google Scholar · View at Scopus
  4. U. Leiter, P. G. Buettner, T. K. Eigentler et al., “Hazard rates for recurrent and secondary cutaneous melanoma: an analysis of 33,384 patients in the German Central Malignant Melanoma Registry,” Journal of the American Academy of Dermatology, vol. 66, no. 1, pp. 37–45, 2012. View at Publisher · View at Google Scholar · View at PubMed
  5. C. C. Stucky, R. J. Gray, A. C. Dueck et al., “Risk factors associated with local and in-transit recurrence of cutaneous melanoma,” American Journal of Surgery, vol. 200, no. 6, pp. 770–774, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. Clemente-Ruiz de Almiron and S. Serrano-Ortega, “Risk factors for in-transit metastasis in patients with cutaneous melanoma,” Actas Dermosifiliogr. In press. View at Publisher · View at Google Scholar · View at PubMed
  7. X. Wortsman and J. Wortsman, “Clinical usefulness of variable-frequency ultrasound in localized lesions of the skin,” Journal of the American Academy of Dermatology, vol. 62, no. 2, pp. 247–256, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Badea, M. Crişan, M. Lupşor, and L. Fodor, “Diagnosis and characterization of cutaneous tumors using combined ultrasonographic procedures (conventional and high resolution ultrasonography),” Medical Ultrasonography, vol. 12, no. 4, pp. 317–322, 2010. View at Google Scholar
  9. O. Catalano, C. Caracò, N. Mozzillo, and A. Siani, “Locoregional spread of cutaneous melanoma: sonography findings,” American Journal of Roentgenology, vol. 194, no. 3, pp. 735–745, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Tacke, G. Haagen, O. Hornstein et al., “Clinical relevance of sonometry-derived tumour thickness in malignant melanoma—a statistical analysis,” British Journal of Dermatology, vol. 132, no. 2, pp. 209–214, 1995. View at Google Scholar · View at Scopus
  11. B. D. Fornage, M. H. McGavran, M. Duvic, and C. A. Waldron, “Imaging of the skin with 20-MHz US,” Radiology, vol. 189, no. 1, pp. 69–76, 1993. View at Google Scholar · View at Scopus
  12. P. Guitera, L. X. Li, K. Crotty et al., “Melanoma histological Breslow thickness predicted by 75-MHz ultrasonography,” British Journal of Dermatology, vol. 159, no. 2, pp. 364–369, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Vilana, S. Puig, M. Sanchez et al., “Preoperative assessment of cutaneous melanoma thickness using 10-MHz sonography,” American Journal of Roentgenology, vol. 193, no. 3, pp. 639–643, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. M. Mušič, K. Hertl, M. Kadivec, M. D. Pavlović, and M. Hočevar, “Pre-operative ultrasound with a 12-15 MHz linear probe reliably differentiates between melanoma thicker and thinner than 1 mm,” Journal of the European Academy of Dermatology and Venereology, vol. 24, no. 9, pp. 1105–1108, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. O. Catalano and A. Siani, “Cutaneous melanoma: role of ultrasound in the assessment of locoregional spread,” Current Problems in Diagnostic Radiology, vol. 39, no. 1, pp. 30–36, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. K. Hoffmann, J. Jung, S. El Gammal, and P. Altmeyer, “Malignant melanoma in 20-MHz B scan sonography,” Dermatology, vol. 185, no. 1, pp. 49–55, 1992. View at Google Scholar · View at Scopus
  17. D. Jasaitiene, S. Valiukeviciene, G. Linkeviciute, R. Raisutis, E. Jasiuniene, and R. Kazys, “Principles of high-frequency ultrasonography for investigation of skin pathology,” Journal of the European Academy of Dermatology and Venereology, vol. 25, no. 4, pp. 375–382, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. V. Kaikaris, D. Samsanavičius, K. Maslauskas et al., “Measurement of melanoma thickness—comparison of two methods: ultrasound versus morphology,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 64, no. 6, pp. 796–802, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. K. Wheatley, N. Ives, B. Hancock, M. Gore, A. Eggermont, and S. Suciu, “Does adjuvant interferon-α for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials,” Cancer Treatment Reviews, vol. 29, no. 4, pp. 241–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Pirard, M. Heenen, C. Melot, and P. Vereecken, “Interferon alpha as adjuvant postsurgical treatment of melanoma: a meta-analysis,” Dermatology, vol. 208, no. 1, pp. 43–48, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. B. Lens and M. Dawes, “Interferon alfa therapy for malignant melanoma: a systematic review of randomized controlled trials,” Journal of Clinical Oncology, vol. 20, no. 7, pp. 1818–1825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mocellin, S. Pasquali, C. R. Rossi, and D. Nitti, “Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis,” Journal of the National Cancer Institute, vol. 102, no. 7, pp. 493–501, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. M. Eggermont, S. Suciu, R. MacKie et al., “Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial,” Lancet, vol. 366, no. 9492, pp. 1189–1196, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. W. Chang, “Cutaneous melanoma: Taiwan experience and literature review,” Chang Gung Medical Journal, vol. 33, no. 6, pp. 602–612, 2010. View at Google Scholar
  25. M. K. Khan, N. Khan, A. Almasan, and R. Macklis, “Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents,” Journal of OncoTargets and Therapy, vol. 4, pp. 137–148, 2011. View at Google Scholar
  26. Y. Harada, K. Ogawa, Y. Irie et al., “Ultrasound activation of TiO2 in melanoma tumors,” Journal of Controlled Release, vol. 20, no. 149, pp. 190–195, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Lassau, S. Mercier, S. Koscielny et al., “Prognostic value of high-frequency sonography and color Doppler sonography for the preoperative assessment of melanomas,” American Journal of Roentgenology, vol. 172, no. 2, pp. 457–461, 1999. View at Google Scholar · View at Scopus
  28. N. Lassau, S. Koscielny, M. F. Avril et al., “Prognostic value of angiogenesis evaluated with high-frequency and color doppler sonography for preoperative assessment of melanomas,” American Journal of Roentgenology, vol. 178, no. 6, pp. 1547–1551, 2002. View at Google Scholar · View at Scopus
  29. C. Voit, A. C. van Akkooi, G. Schäfer-Hesterberg et al., “Ultrasound morphology criteria predict metastatic disease of the sentinel nodes in patients with melanoma,” Journal of Clinical Oncology, vol. 28, no. 5, pp. 847–852, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. C. A. Voit, A. C. van Akkooi, G. Schäfer-Hesterberg et al., “Rotterdam Criteria for sentinel node (SN) tumor burden and the accuracy of ultrasound (US)-guided fine-needle aspiration cytology (FNAC): can US-guided FNAC replace SN staging in patients with melanoma?” Journal of Clinical Oncology, vol. 27, no. 30, pp. 4994–5000, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. N. Lassau, A. Spatz, M. F. Avril et al., “Value of high-frequency US for preoperative assessment of skin tumors,” Radiographics, vol. 17, no. 6, pp. 1559–1565, 1997. View at Google Scholar · View at Scopus
  32. L. Rubaltelli, V. Beltrame, A. Tregnaghi, E. Scagliori, A. C. Frigo, and R. Stramare, “Contrast-enhanced ultrasound for characterizing lymph nodes with focal cortical thickening in patients with cutaneous melanoma,” American Journal of Roentgenology, vol. 196, no. 1, pp. W8–W12, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. L. Chami, N. Lassau, M. Chebil, and C. Robert, “Imaging of melanoma: Usefulness of ultrasonography before and after contrast injection for diagnosis and early evaluation of treatment,” Clinical, Cosmetic and Investigational Dermatology, vol. 4, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at PubMed
  34. N. Lassau, L. Chami, M. Chebil et al., “Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments,” Discovery Medicine, vol. 11, no. 56, pp. 18–24, 2011. View at Google Scholar
  35. N. Lassau, M. Chebil, L. Chami, S. Bidault, E. Girard, and A. Roche, “Dynamic contrast-enhanced ultrasonography (DCE-US): a new tool for the early evaluation of antiangiogenic treatment,” Targeted Oncology, vol. 5, no. 1, pp. 53–58, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. N. Lassau, L. Chami, B. Benatsou, P. Peronneau, and A. Roche, “Dynamic contrast-enhanced ultrasonography (DCE-US) with quantification of tumor perfusion: a new diagnostic tool to evaluate the early effects of antiangiogenic treatment,” European Radiology, Supplement, vol. 17, supplement 6, pp. F89–F98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Optics Express, vol. 16, no. 14, pp. 9770–9779, 2006. View at Google Scholar · View at Scopus