Table of Contents Author Guidelines Submit a Manuscript
Radiology Research and Practice
Volume 2016, Article ID 2657405, 10 pages
http://dx.doi.org/10.1155/2016/2657405
Research Article

Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis

1Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
2Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
3Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
4Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
5Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

Received 29 January 2016; Revised 5 May 2016; Accepted 24 May 2016

Academic Editor: Weili Lin

Copyright © 2016 Sharon Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. R. Rosen, J. W. Belliveau, J. M. Vevea, and T. J. Brady, “Perfusion imaging with NMR contrast agents,” Magnetic Resonance in Medicine, vol. 14, no. 2, pp. 249–265, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Calamante, D. G. Gadian, and A. Connelly, “Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use,” Stroke, vol. 33, no. 4, pp. 1146–1151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Sugahara, Y. Korogi, M. Kochi, Y. Ushio, and M. Takahashi, “Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques,” American Journal of Neuroradiology, vol. 22, no. 7, pp. 1306–1315, 2001. View at Google Scholar · View at Scopus
  4. A. Vilringer, B. R. Rosen, J. W. Belliveau et al., “Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects,” Magnetic Resonance in Medicine, vol. 6, no. 2, pp. 164–174, 1988. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Boxerman, L. M. Hamberg, B. R. Rosen, and R. M. Weisskoff, “MR contrast due to intravascular magnetic susceptibility perturbations,” Magnetic Resonance in Medicine, vol. 34, no. 4, pp. 555–566, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Duhamel, G. Schlaug, and D. C. Alsop, “Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results,” Magnetic Resonance in Medicine, vol. 55, no. 3, pp. 514–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. G. Sorensen, “What is the meaning of quantitative CBF?” American Journal of Neuroradiology, vol. 22, no. 2, pp. 235–236, 2001. View at Google Scholar · View at Scopus
  8. N. A. Thacker, M. L. J. Scott, and A. Jackson, “Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow?” Journal of Magnetic Resonance Imaging, vol. 17, no. 2, pp. 241–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Ostergaard, D. F. Smith, P. Vestergaard-Poulsen et al., “Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values,” Journal of Cerebral Blood Flow & Metabolism, vol. 18, no. 4, pp. 425–432, 1998. View at Google Scholar
  10. M. J. P. Van Osch, E.-J. P. A. Vonken, C. J. G. Bakker, and M. A. Viergever, “Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI,” Magnetic Resonance in Medicine, vol. 45, no. 3, pp. 477–485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. P. van Osch, E.-J. P. A. Vonken, M. A. Viergever, J. van der Grond, and C. J. G. Bakker, “Measuring the arterial input function with gradient echo sequences,” Magnetic Resonance in Medicine, vol. 49, no. 6, pp. 1067–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bjørnerud and K. E. Emblem, “A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 5, pp. 1066–1078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Knutsson, E. Lindgren, A. Ahlgren et al., “Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration,” Journal of Magnetic Resonance Imaging, vol. 41, no. 4, pp. 903–908, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Rempp, G. Brix, F. Wenz, C. R. Becker, F. Gückel, and W. J. Lorenz, “Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging,” Radiology, vol. 193, no. 3, pp. 637–641, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Li, J. Tian, E. Li, X. Wang, J. Dai, and L. Ai, “Adaptive total linear least square method for quantification of mean transit time in brain perfusion MRI,” Magnetic Resonance Imaging, vol. 21, no. 5, pp. 503–510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. Martel, A. R. Moody, S. J. Allder, G. S. Delay, and P. S. Morgan, “Extracting parametric images from dynamic contrast-enhanced MRI studies of the brain using factor analysis,” Medical Image Analysis, vol. 5, no. 1, pp. 29–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Martel, D. Fraser, G. S. Delay, P. S. Morgan, and A. R. Moody, “Separating arterial and venous components from 3D dynamic contrast-enhanced MRI studies using factor analysis,” Magnetic Resonance in Medicine, vol. 49, no. 5, pp. 928–933, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Murase, K. Kikuchi, H. Miki, T. Shimizu, and J. Ikezoe, “Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging,” Journal of Magnetic Resonance Imaging, vol. 13, no. 5, pp. 797–806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. McKeown, S. Makeig, G. G. Brown et al., “Analysis of fMRI data by blind separation into independent spatial components,” Human Brain Mapping, vol. 6, no. 3, pp. 160–188, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. McKeown and T. J. Sejnowski, “Independent component analysis of fMRI data: examining the assumptions,” Human Brain Mapping, vol. 6, no. 5-6, pp. 368–372, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Dodel, J. M. Herrmann, and T. Geisel, “Localization of brain activity—blind separation for fMRI data,” Neurocomputing, vol. 32-33, pp. 701–708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “A method for making group inferences from functional MRI data using independent component analysis,” Human Brain Mapping, vol. 14, no. 3, pp. 140–151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Formisano, F. Esposito, N. Kriegeskorte, G. Tedeschi, F. Di Salle, and R. Goebel, “Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components,” Neurocomputing, vol. 49, pp. 241–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Esposito, E. Seifritz, E. Formisano et al., “Real-time independent component analysis of fMRI time-series,” NeuroImage, vol. 20, no. 4, pp. 2209–2224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Kiviniemi, J.-H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage, vol. 19, no. 2, pp. 253–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Calamante, M. Mørup, and L. K. Hansen, “Defining a local arterial input function for perfusion MRI using independent component analysis,” Magnetic Resonance in Medicine, vol. 52, no. 4, pp. 789–797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y.-H. Kao, W.-Y. Guo, Y.-T. Wu et al., “Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation,” Magnetic Resonance in Medicine, vol. 49, no. 5, pp. 885–894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Carroll, V. M. Haughton, H. A. Rowley, and D. Cordes, “Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis,” American Journal of Neuroradiology, vol. 23, no. 6, pp. 1007–1012, 2002. View at Google Scholar · View at Scopus
  29. K. L. Leenders, D. Perani, A. A. Lammertsma et al., “Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age,” Brain, vol. 113, no. 1, pp. 27–47, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. V. G. Kiselev, “On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI,” Magnetic Resonance in Medicine, vol. 46, no. 6, pp. 1113–1122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, NY, USA, 2001.
  32. A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-L. Liu, Y. Pu, Y. Liu et al., “Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold,” Magnetic Resonance in Medicine, vol. 42, no. 1, pp. 167–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. V. G. Kiselev, “Transverse relaxation effect of MRI contrast agents: a crucial issue for quantitative measurements of cerebral perfusion,” Journal of Magnetic Resonance Imaging, vol. 22, no. 6, pp. 693–696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Yablonskiy and E. M. Haacke, “Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime,” Magnetic Resonance in Medicine, vol. 32, no. 6, pp. 749–763, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. B. F. Kjølby, L. Østergaard, and V. G. Kiselev, “Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation,” Magnetic Resonance in Medicine, vol. 56, no. 1, pp. 187–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Calamante, “Arterial input function in perfusion MRI: a comprehensive review,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 74, pp. 1–32, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. B. R. Rosen, J. W. Belliveau, and D. Chien, “Perfusion imaging by nuclear magnetic resonance,” Magnetic Resonance Quarterly, vol. 5, no. 4, pp. 263–281, 1989. View at Google Scholar · View at Scopus