Stem Cells International
 Journal metrics
See full report
Acceptance rate31%
Submission to final decision94 days
Acceptance to publication26 days
CiteScore7.200
Journal Citation Indicator0.770
Impact Factor5.443

Article of the Year 2020

Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis

Read the full article

 Journal profile

Stem Cells International publishes papers in all areas of stem cell biology and applications. The journal publishes basic, translational, and clinical research, including animal models and clinical trials.

 Editor spotlight

Chief Editor Professor Li has a background in cardiac stem cell transplantation, using young stem cells to promote tissue repair following injury to rejuvenate the aged individual, and the development of biomaterials that can easily integrate into damaged heart tissue.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

MSC-Derived Extracellular Vesicles Activate Mitophagy to Alleviate Renal Ischemia/Reperfusion Injury via the miR-223-3p/NLRP3 Axis

Background. MSC-derived extracellular vehicles (EVs) exhibit a protective functional role in renal ischemia/reperfusion injury (RIRI). Recent studies have revealed that mitophagy could be a potential target process in the treatment of RIRI. However, whether MSC-derived EVs are involved in the regulation of mitophagy in RIRI remains largely unknown to date. Methods. RIRI model was established in vivo in mice by subjecting them to renal ischemia/reperfusion. TCMK-1 cells were subjected to hypoxia/reoxygenation (H/R) stimulation to mimic RIRI in vitro. BMSCs and BMSC-derived EVs were isolated and identified. Renal injury was assessed using H&E staining. The qPCR and western blot analyses were conducted to detect the mRNA and protein levels. Apoptosis was evaluated using the TUNEL assay and flow cytometry analysis. The EVs, autophagosomes, and mitochondria were observed using TEM. The colocalization of autophagosomes with mitochondria was confirmed through the confocal assay. The direct binding of miR-223-3p to NLRP3 was validated through the dual-luciferase assay. Results. BMSCs and BMSC-derived EVs were successfully isolated from mice and identified. The protective effect of BMSC-derived EVs against RIRI was validated both in vitro and in vivo, which was indicated by a decrease in apoptosis and inflammasome activation and an increase in mitophagy. However, this protective effect was impaired in the miR-223-3p-depleted EVs, suggesting that miR-223-3p mediated this protective effect. Further mechanistic investigation revealed that miR-223-3p suppressed inflammasome activation to enhance mitophagy by directly targeting NLRP3. Conclusion. In conclusion, the protective role of BMSC-derived EVs and exosome-delivered miR-223-3p in RIRI was validated. Exogenous miR-223-3p directly targeted NLRP3 to attenuate inflammasome activation, thereby promoting mitophagy.

Research Article

Anti-inflammatory and Tendon-Protective Effects of Adipose Stem Cell-Derived Exosomes with Concomitant Use of Glucocorticoids

Glucocorticoid (GC) injections are commonly used in clinical practice to relieve pain and improve function in patients with multiple shoulder disabilities but cause detrimental effects on rotator cuff tendons. Adipose stem cell-derived exosomes (ASC-Exos) reportedly recover impaired tendon matrix metabolism by maintaining tissue homeostasis. However, it is unclear whether additional treatment with ASC-Exos overrides the detrimental effects of GCs without interfering with their anti-inflammatory effects. Thus, we aimed to investigate the anti-inflammatory effect of ASC-Exos with GCs and protective effect of ASC-Exos against GC-induced detriments. The present study comprised in vitro and in vivo studies. In vitro inflammatory analysis revealed that ASC-Exos exerted a synergic anti-inflammatory effect with GCs by significantly decreasing secretion of proinflammatory cytokines by RAW cells and increasing secretion of anti-inflammatory cytokines. In vitro cytoprotective analysis showed that ASC-Exos overrode GC-induced detrimental effects on tenocytes by significantly improving GC-suppressed cellular proliferation, migration, and transcription of tenocytic matrix molecules and degradative enzyme inhibitors and significantly decreasing GC-induced cell senescence, apoptosis, and transcription of ROS and tenocytic degradative enzymes. In vivo studies revealed that additional ASC-Exo injection restored impairments in histological and biomechanical properties owing to GC administration. Collectively, these results suggest that ASC-Exos exert a stronger anti-inflammatory effect in combination with GCs, overriding their detrimental effects on rotator cuff tendons.

Review Article

Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review

Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.

Research Article

Enhanced Repaired Enthesis Using Tenogenically Differentiated Adipose-Derived Stem Cells in a Murine Rotator Cuff Injury Model

Rotator cuff tear (RCT) is among the most common shoulder injuries and is prone to rerupture after surgery. Selecting suitable subpopulations of stem cells as a new specific cell type of mesenchymal stem cells has been increasingly used as a potential therapeutic tool in regenerative medicine. In this study, murine adipose-derived SSEA-4+CD90+PDGFRA+ subpopulation cells were successfully sorted, extracted, and identified. These cells showed good proliferation and differentiation potential, especially in the direction of tendon differentiation, as evidenced by qRT-PCR and immunofluorescence. Subsequently, we established a murine rotator cuff injury model and repaired it with subpopulation cells. Our results showed that the subpopulation cells embedded in a fibrin sealant significantly improved the histological score, as well as the biomechanical strength of the repaired tendon enthesis at four weeks after surgery, compared with the other groups. Hence, these findings indicated that the subpopulation of cells could augment the repaired enthesis and lead to better outcomes, thereby reducing the retear rate after rotator cuff repair. Our study provides a potential therapeutic strategy for rotator cuff healing in the future.

Review Article

Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy

Mesenchymal stem cells (MSCs) have been widely applied to regenerative medicine owing to their multiple differentiation, self-renewal, and immunomodulatory abilities. Exosomes are cell-secreted natural nanovesicles and thought to be mediators of intercellular communication and material transport. The therapeutic potential of MSCs can be largely attributed to MSC-derived exosomes (MSC-exosomes). Emerging evidence suggests that the therapeutic efficacy of MSC-exosomes is highly dependent on the status of MSCs, and optimization of the extracellular environment affects the exosomal content. Pretreatment methods including three-dimensional cultures, hypoxia, and other biochemical cues have been shown to potentially enhance the biological activity of MSC-exosomes while maintaining or enhancing their production. On the other hand, engineering means to enhance the desired function of MSC-exosomes has been rapidly gaining attention. In particular, biologically active molecule encapsulation and membrane modification can alter or enhance biological functions and targeting of MSC-exosomes. In this review, we summarize two possible strategies to improve the therapeutic activity of MSC-exosomes: preconditioning approaches and engineering exosomes. We also explore the underlying mechanisms of different strategies and discuss their advantages and limitations of the upcoming clinical applications.

Review Article

Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy

Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.

Stem Cells International
 Journal metrics
See full report
Acceptance rate31%
Submission to final decision94 days
Acceptance to publication26 days
CiteScore7.200
Journal Citation Indicator0.770
Impact Factor5.443
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.