Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2010, Article ID 587213, 14 pages
http://dx.doi.org/10.4061/2010/587213
Research Article

Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

1Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
2Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
3Department of Chemistry and Technology of the Drug, School of Pharmacy, University of Perugia, 06126 Perugia, Italy
4Department of Surgery, University of Perugia, 06126 Perugia, Italy

Received 19 March 2009; Revised 20 July 2009; Accepted 27 August 2009

Academic Editor: Paul T. Sharpe

Copyright © 2010 Francesca Mancuso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Nathan, “The rationale for glucose control in diabetes mellitus,” Endocrinology and Metabolism Clinics of North America, vol. 21, no. 2, pp. 221–235, 1992. View at Google Scholar · View at Scopus
  2. L. G. Hemkens, U. Grouven, R. Bender et al., “Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study,” Diabetologia, vol. 52, no. 9, pp. 1732–1744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. J. Shapiro, C. Ricordi, B. J. Hering et al., “International trial of the Edmonton protocol for islet transplantation,” The New England Journal of Medicine, vol. 355, no. 13, pp. 1318–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Korbutt, J. F. Elliott, Z. Ao, D. K. Smith, G. L. Warnock, and R. V. Rajotte, “Large scale isolation, growth, and function of porcine neonatal islet cells,” Journal of Clinical Investigation, vol. 97, no. 9, pp. 2119–2129, 1996. View at Google Scholar · View at Scopus
  5. G. Luca, C. Nastruzzi, M. Calvitti et al., “Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo post-transplant results in NOD mice,” Cell Tranplantation, vol. 14, pp. 249–261, 2005. View at Google Scholar
  6. K. Cardona, G. S. Korbutt, Z. Milas et al., “Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways,” Nature Medicine, vol. 12, no. 3, pp. 304–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Trivedi, J. Hollister-Lock, M. D. Lopez-Avalos et al., “Increase in ß-cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of ß-cells and differentiation of duct cells,” Endocrinology, vol. 142, no. 5, pp. 2115–2122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. G. Murray, R. C. Nelson, G. R. Rayat, J. F. Elliott, and G. S. Korbutt, “Neonatal porcine islet cells induce human CD4+, but not CD8+, lymphocyte proliferation and resist cell-mediated cytolytic injury in vitro,” Diabetes, vol. 48, no. 9, pp. 1713–1719, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. G. S. Korbutt, G. L. Warnock, and R. V. Rajotte, “Islet transplantation,” in Physiology and Pathophysiology of the Islets of Langerhans, vol. 426 of Advances in Experimental Medicine and Biology, pp. 397–410, Springer, New York, NY, USA, 1997. View at Google Scholar
  10. R. A. Valdés-González, L. M. Dorantes, G. N. Garibay et al., “Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study,” European Journal of Endocrinology, vol. 153, no. 3, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Mancuso, G. Basta, M. Calvitti et al., “Long-term cultured neonatal porcine islet cell monolayers: a potential tissue source for transplant in diabetes,” Xenotransplantation, vol. 13, no. 4, pp. 289–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Morrison-Graham and Y. Takahashi, “Steel factor and c-kit receptor: from mutants to a growth factor system,” BioEssays, vol. 15, no. 2, pp. 77–83, 1993. View at Google Scholar · View at Scopus
  13. V. C. Broudy, “Stem cell factor and hematopoiesis,” Blood, vol. 90, no. 4, pp. 1345–1364, 1997. View at Google Scholar · View at Scopus
  14. C. Oberg-Welsh, J. Waltenberger, L. Claesson-Welsh, and M. Welsh, “Expression of protein tyrosine kinase in islet cells: possible role of the Flk-1 receptor for β-cell maturation from duct cells,” Growth Factors, vol. 10, pp. 115–126, 1994. View at Google Scholar
  15. C. Oberg-Welsh and M. Welsh, “Effects of certain growth factors on in vitro maturation of rat fetal islet-like structures,” Pancreas, vol. 12, no. 4, pp. 334–339, 1996. View at Google Scholar · View at Scopus
  16. L. Rachdi, L. El Ghazi, F. Bemex, J. J. Panthier, P. Czrnichow, and R. Scharfmann, “Expression of the receptor tyrosine kinase KIT in mature beta-cells and in the pancreas in development,” Diabetes, vol. 50, pp. 2021–2028, 2001. View at Google Scholar
  17. J. Li, K. Lyte, F. Fellows, C. G. Goodyer, and R. Wang, “The role of c-kit and its ligand stem cell factor in the development human pancreas,” Diabetes, vol. 54, p. S39, 2005. View at Google Scholar
  18. M. Miyamoto, Y. Morimoto, Y. Nozawa, A. N. Balamurugan, B. Xu, and K. Inoue, “Establishment of fluorescein diacetate and ethidium bromide (FDAEB) assay for quality assessment of isolated islets,” Cell Transplantation, vol. 9, no. 5, pp. 681–686, 2000. View at Google Scholar · View at Scopus
  19. G. S. Korbutt, J. F. Elliott, and R. V. Rajotte, “Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression,” Diabetes, vol. 46, no. 2, pp. 317–322, 1997. View at Google Scholar · View at Scopus
  20. J. P. Mather and D. D. Philips, “Primary culture of testicular somatic cells,” in Methods for Serum Free Culture of Cells of the Endocrine System, D. W. Barnes, D. A. Sirbasku, and G. H. Sato, Eds., pp. 24–45, New York Liss, New York, NY, USA, 1999. View at Google Scholar
  21. M. Galdieri, E. Riparo, F. Palombi, M. A. Russo, and M. J. Stefanini, “Pure Sertoli cell cultures: a new model for the study of somatic-germ cell interaction,” Journal of Andrology, vol. 2, pp. 249–254, 1981. View at Google Scholar
  22. R. Calafiore and G. Basta, “Alginate/Poly-l-ornithine microcapsules for pancreatic islet cell immunoprotection,” in Cell Encapsulation Technology and Therapeutics, W. Kuhtreiber, R. P. Lanza, and W. L. Chick, Eds., pp. 138–150, Birkhäuser, Boston, Mass, USA, 1999. View at Google Scholar
  23. R. Calafiore, “Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus,” Expert Opinion on Biological Therapy, vol. 3, no. 2, pp. 201–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Luca, M. Calvitti, C. Nastruzzi et al., “Encapsulation, in vitro characterization and in vivo biocompatibility of sertoli's cells in alginate based microcapsules,” Tissue Engineering, vol. 13, pp. 641–648, 2007. View at Google Scholar
  25. R. J. Gillies, N. Didier, and M. Denton, “Determination of cell number in monolayer cultures,” Analytical Biochemistry, vol. 159, no. 1, pp. 109–113, 1986. View at Google Scholar · View at Scopus
  26. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  27. G. Luca, M. Calvitti, L. M. Neri et al., “Sertoli cell-induced reversal of adult rat pancreatic islet cells into fetal status: potential implications for islet transplantation in type I diabetes mellitus,” Journal of Investigative Medicine, vol. 48, no. 6, pp. 441–448, 2000. View at Google Scholar · View at Scopus
  28. N. K. Yashpal, J. Li, and R. Wang, “Characterization of c-Kit and nestin expression during islet cell development in the prenatal and postnatal rat pancreas,” Developmental Dynamics, vol. 229, no. 4, pp. 813–825, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Peters, R. Panienka, and J. Li, “Expression of stem cell markers and transcription factor during the remodelling of the rat pancreas after duct ligation,” Virchows Arch, vol. 446, pp. 56–63, 2005. View at Google Scholar
  30. R. Wang, J. Li, and N. Yashpal, “Phenotypic analysis of c-Kit expression in epithelial monolayers derived from postnatal rat pancreatic islets,” Journal of Endocrinology, vol. 182, no. 1, pp. 113–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Li, C. G. Goodyer, F. Fellows, and R. Wang, “Stem cell factor/c-Kit interactions regulate human islet-epithelial cluster proliferation and differentiation,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 961–972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. J. Hemesath, E. R. Price, C. Takemoto, T. Badalian, and D. E. Fisher, “MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes,” Nature, vol. 391, no. 6664, pp. 298–301, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. T. B. Van Dijk, E. Van den Akker, M. Parren-Van Amelsvoort, H. Mano, B. Lowenberg, and M. Von Lindern, “Stem cell factor induces phosphatidylinositol 3-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells,” Blood, vol. 96, no. 10, pp. 3406–3413, 2000. View at Google Scholar · View at Scopus