Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2010 (2010), Article ID 824876, 7 pages
http://dx.doi.org/10.4061/2010/824876
Review Article

Tissue-Derived Stem and Progenitor Cells

Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7211, USA

Received 6 March 2009; Revised 6 July 2009; Accepted 31 August 2009

Academic Editor: Anthony Atala

Copyright © 2010 Leora J. Tesche and David A. Gerber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. L. Weissman, “Translating stem and progenitor cell biology to the clinic: barriers and opportunities,” Science, vol. 287, no. 5457, pp. 1442–1446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Ema and H. Nakauchi, “Self-renewal and lineage restriction of hematopoietic stem cells,” Current Opinion in Genetics & Development, vol. 13, no. 5, pp. 508–512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Donovan and J. Gearhart, “The end of the beginning for pluripotent stem cells,” Nature, vol. 414, no. 6859, pp. 92–96, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  5. H. E. Young, T. A. Steele, R. A. Bray et al., “Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I,” Experimental Biology and Medicine, vol. 221, no. 1, pp. 63–71, 1999. View at Google Scholar · View at Scopus
  6. N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin, and R. McKay, “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets,” Science, vol. 292, no. 5520, pp. 1389–1394, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. G. Deutsch, J. Jung, M. Zheng, J. Lora, and K. S. Zaret, “A bipotential precursor population for pancreas and liver within the embryonic endoderm,” Development, vol. 128, no. 6, pp. 871–881, 2001. View at Google Scholar · View at Scopus
  8. J. S. Odorico, D. S. Kaufman, and J. A. Thomson, “Multilineage differentiation from human embryonic stem cell lines,” Stem Cells, vol. 19, no. 3, pp. 193–204, 2001. View at Google Scholar · View at Scopus
  9. P. S. Knoepfler, “Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine,” Stem Cells, vol. 27, no. 5, pp. 1050–1056, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. J. Wagers, J. L. Christensen, and I. L. Weissman, “Cell fate determination from stem cells,” Gene Therapy, vol. 9, no. 10, pp. 606–612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Wallenfang and E. Matunis, “Developmental biology. Orienting stem cells,” Science, vol. 301, no. 5639, pp. 1490–1491, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Spradling, D. Drummond-Barbosa, and T. Kai, “Stem cells find their niche,” Nature, vol. 414, no. 6859, pp. 98–104, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Y. M. Yamashita, D. L. Jones, and M. T. Fuller, “Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome,” Science, vol. 301, no. 5639, pp. 1547–1550, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. I.-H. Park, R. Zhao, J. A. West et al., “Reprogramming of human somatic cells to pluripotency with defined factors,” Nature, vol. 451, no. 7175, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. Z. D. Burke, S. Thowfeequ, M. Peran, and D. Tosh, “Stem cells in the adult pancreas and liver,” Biochemical Journal, vol. 404, no. 2, pp. 169–178, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. Lü, F. Liu, L. Yan et al., “Stem cells therapy for type 1 diabetes,” Diabetes Research and Clinical Practice, vol. 78, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. Boker, L. Rothenberg, C. Hernandez, N. S. Kenyon, C. Ricordi, and R. Alejandro, “Human islet transplantation: update,” World Journal of Surgery, vol. 25, no. 4, pp. 481–486, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. O. Korsgren, B. Nilsson, C. Berne et al., “Current status of clinical islet transplantation,” Transplantation, vol. 79, no. 10, pp. 1289–1293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. O. D. Madsen, “Pancreas phylogeny and ontogeny in relation to a ‘pancreatic stem cell’,” Comptes Rendus Biologies, vol. 330, no. 6-7, pp. 534–537, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. L. Yang, S. Li, H. Hatch et al., “In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8078–8083, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. J. Jiang, M. Au, K. Lu et al., “Generation of insulin-producing islet-like clusters from human embryonic stem cells,” Stem Cells, vol. 25, no. 8, pp. 1940–1953, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. Jacobson, B. Kahan, A. Djamali, J. Thomson, and J. S. Odorico, “Differentiation of endoderm derivatives, pancreas and intestine, from rhesus embryonic stem cells,” Transplantation Proceedings, vol. 33, no. 1-2, p. 674, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” Stem Cells, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. Li, C. G. Goodyer, F. Fellows, and R. Wang, “Stem cell factor/c-Kit interactions regulate human islet-epithelial cluster proliferation and differentiation,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 961–972, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. A. D'Amour, A. G. Bang, S. Eliazer et al., “Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells,” Nature Biotechnology, vol. 24, no. 11, pp. 1392–1401, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Dor, J. Brown, O. I. Martinez, and D. A. Melton, “Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation,” Nature, vol. 429, no. 6987, pp. 41–46, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Nir, D. A. Melton, and Y. Dor, “Recovery from diabetes in mice by β cell regeneration,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2553–2561, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. G. Gu, J. R. Brown, and D. A. Melton, “Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis,” Mechanisms of Development, vol. 120, no. 1, pp. 35–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Gu, J. Dubauskaite, and D. A. Melton, “Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors,” Development, vol. 129, no. 10, pp. 2447–2457, 2002. View at Google Scholar · View at Scopus
  32. Y. Q. Zhang, M. Kritzik, and N. Sarvetnick, “Identification and expansion of pancreatic stem/progenitor cells,” Journal of Cellular and Molecular Medicine, vol. 9, no. 2, pp. 331–344, 2005. View at Google Scholar · View at Scopus
  33. X. Xu, J. D'Hoker, G. Stangé et al., “β cells can be generated from endogenous progenitors in injured adult mouse pancreas,” Cell, vol. 132, no. 2, pp. 197–207, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. V. Gmyr, J. Kerr-Conte, S. Belaich et al., “Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans,” Diabetes, vol. 49, no. 10, pp. 1671–1680, 2000. View at Google Scholar · View at Scopus
  35. M. Zalzman, S. Gupta, R. K. Giri et al., “Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7253–7258, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. Mosterd and A. W. Hoes, “Clinical epidemiology of heart failure,” Heart, vol. 93, no. 9, pp. 1137–1146, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Mazhari and J. M. Hare, “Advances in cell-based therapy for structural heart disease,” Progress in Cardiovascular Diseases, vol. 49, no. 6, pp. 387–395, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. L. Yang, M. H. Soonpaa, E. D. Adler et al., “Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population,” Nature, vol. 453, no. 7194, pp. 524–528, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J.-Y. Min, Y. Yang, M. F. Sullivan et al., “Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 2, pp. 361–369, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. F. Fogt, K. H. Beyser, C. Poremba, R. L. Zimmerman, and J. Ruschoff, “Evaluation of host stem cell-derived cardiac myocytes in consecutive biopsies in long-term cardiac transplant patients,” Journal of Heart and Lung Transplantation, vol. 22, no. 12, pp. 1314–1317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Bearzi, M. Rota, T. Hosoda et al., “Human cardiac stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 35, pp. 14068–14073, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. B. Zhou, Q. Ma, S. Rajagopal et al., “Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart,” Nature, vol. 454, no. 7200, pp. 109–113, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. V. Schächinger, S. Erbs, A. Elsässer et al., “Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1210–1221, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. G. P. Meyer, K. C. Wollert, J. Lotz et al., “Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial,” Circulation, vol. 113, no. 10, pp. 1287–1294, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. Lunde, S. Solheim, S. Aakhus et al., “Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial,” American Heart Journal, vol. 154, no. 4, pp. 710.e1–710.e8, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. X. L. Kuai, X. Q. Cong, X. L. Li, and S. D. Xiao, “Generation of hepatocytes from cultured mouse embryonic stem cells,” Liver Transplantation, vol. 9, no. 10, pp. 1094–1099, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. Y. Kumashiro, K. Asahina, R. Ozeki et al., “Enrichment of hepatocytes differentiated from mouse embryonic stem cells as a transplantable source,” Transplantation, vol. 79, no. 5, pp. 550–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kakinuma, H. Nakauchi, and M. Watanabe, “Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease,” Journal of Gastroenterology, vol. 44, no. 3, pp. 167–172, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. E. Schmelzer, L. Zhang, A. Bruce et al., “Human hepatic stem cells from fetal and postnatal donors,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1973–1987, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. Shinozuka, B. Lombardi, S. Sell, and R. M. Iammarino, “Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet,” Cancer Research, vol. 38, no. 4, pp. 1092–1098, 1978. View at Google Scholar · View at Scopus
  51. J. M. Lemire, N. Shiojiri, and N. Fausto, “Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine,” American Journal of Pathology, vol. 139, no. 3, pp. 535–552, 1991. View at Google Scholar · View at Scopus
  52. S. Paku, J. Schnur, P. Nagy, and S. S. Thorgeirsson, “Origin and structural evolution of the early proliferating oval cells in rat liver,” American Journal of Pathology, vol. 158, no. 4, pp. 1313–1323, 2001. View at Google Scholar · View at Scopus
  53. B. E. Petersen, V. F. Zajac, and G. K. Michalopoulos, “Bile ductular damage induced by methylene dianiline inhibits oval cell activation,” American Journal of Pathology, vol. 151, no. 4, pp. 905–909, 1997. View at Google Scholar · View at Scopus
  54. B. E. Petersen, V. F. Zajac, and G. K. Michalopoulos, “Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats,” Hepatology, vol. 27, no. 4, pp. 1030–1038, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. Wang, J. B. Clark, G.-S. Rhee, J. H. Fair, L. M. Reid, and D. A. Gerber, “Proliferation and hepatic differentiation of adult-derived progenitor cells,” Cells Tissues Organs, vol. 173, no. 4, pp. 193–203, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. Yin, M. Sun, Z. Ilic, H. L. Leffert, and S. Sell, “Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats,” Hepatology, vol. 35, no. 2, pp. 315–324, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. A. Khan, N. Parveen, V. S. Mahaboob et al., “Treatment of crigler-najjar syndrome type 1 by hepatic progenitor cell transplantation: a simple procedure for management of hyperbilirubinemia,” Transplantation Proceedings, vol. 40, no. 4, pp. 1148–1150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. C. M. Habibullah, I. H. Syed, A. Qamar, and Z. Taher-Uz, “Human fetal hepatocyte transplantation in patients with fulminant hepatic failure,” Transplantation, vol. 58, no. 8, pp. 951–952, 1994. View at Google Scholar · View at Scopus
  59. M. Oertel, A. Menthena, Y. Chen, B. Teisner, C. H. Jensen, and D. A. Shafritz, “Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver,” Gastroenterology, vol. 134, no. 3, pp. 823–832, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. M. I. Yovchev, P. N. Grozdanov, H. Zhou, H. Racherla, C. Guha, and M. D. Dabeva, “Identification of adult hepatic progenitor cells capable of repopulating injured rat liver,” Hepatology, vol. 47, no. 2, pp. 636–647, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. N. Wright, L. Samuelson, M. H. Walkup, P. Chandrasekaran, and D. A. Gerber, “Enrichment of a bipotent hepatic progenitor cell from naive adult liver tissue,” Biochemical and Biophysical Research Communications, vol. 366, no. 2, pp. 367–372, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. C. B. Rountree, L. Barsky, S. Ge, J. Zhu, S. Senadheera, and G. M. Crooks, “A CD133-expressing murine liver oval cell population with bilineage potential,” Stem Cells, vol. 25, no. 10, pp. 2419–2429, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Hardjo, M. Miyazaki, M. Sakaguchi et al., “Suppression of carbon tetrachloride-induced liver fibrosis by transplantation of a clonal mesenchymal stem cell line derived from rat bone marrow,” Cell Transplantation, vol. 18, no. 1, pp. 89–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Ben-Hur, M. Idelson, H. Khaner et al., “Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats,” Stem Cells, vol. 22, no. 7, pp. 1246–1255, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. Y. Takagi, J. Takahashi, H. Saiki et al., “Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model,” The Journal of Clinical Investigation, vol. 115, no. 1, pp. 102–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. H. S. Keirstead, G. Nistor, G. Bernal et al., “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury,” Journal of Neuroscience, vol. 25, no. 19, pp. 4694–4705, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. S. A. Goldman, “Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells,” Clinical Pharmacology and Therapeutics, vol. 82, no. 4, pp. 453–460, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. N. S. Roy, C. Cleren, S. K. Singh, L. Yang, M. F. Beal, and S. A. Goldman, “Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes,” Nature Medicine, vol. 12, no. 11, pp. 1259–1268, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. Z. Tothova and D. G. Gilliland, “FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system,” Cell Stem Cell, vol. 1, no. 2, pp. 140–152, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. M. Cherubino and K. G. Marra, “Adipose-derived stem cells for soft tissue reconstruction,” Regenerative Medicine, vol. 4, no. 1, pp. 109–117, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. B. Lu, C. Malcuit, S. Wang et al., “Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration,” Stem Cells, vol. 27, no. 9, pp. 2126–2135, 2009. View at Google Scholar