Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 704256, 9 pages
http://dx.doi.org/10.4061/2011/704256
Review Article

Proteomic Definitions of Mesenchymal Stem Cells

Department of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

Received 4 August 2010; Accepted 17 January 2011

Academic Editor: Gerald A. Colvin

Copyright © 2011 Martin H. Maurer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Prockop, “Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms,” Molecular Therapy, vol. 17, no. 6, pp. 939–946, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. National Institutes of Health, “Regenerative Medicine,” 2006, http://stemcells.nih.gov/staticresources/info/scireport/PDFs/Regenerative_Medicine_2006.pdf.
  3. M. E. Bernardo, F. Locatelli, and W. E. Fibbe, “Mesenchymal stromal cells: a novel treatment modality for tissue repair,” Annals of the New York Academy of Sciences, vol. 1176, pp. 101–117, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. H. Maurer and W. Kuschinsky, “Chapter 7.1: proteomics,” in Handbook of Neurochemistry and Molecular Neurobiology, A. Lajtha, G. E. Gibson, and G. A. Dienel, Eds., vol. 5 of Brain Energetics. Integration of Cellular and Molecular Processes, pp. 737–769, Springer, New York, NY, USA, 2007. View at Google Scholar
  6. M. H. Maurer and W. Kuschinsky, “Screening the brain: molecular fingerprints of neural stem cells,” Current Stem Cell Research & Therapy, vol. 1, no. 1, pp. 65–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Raff, “Adult stem cell plasticity: fact or artifact?” Annual Review of Cell and Developmental Biology, vol. 19, pp. 1–22, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. L. Jackson, D. Jones, P. Scotting, and V. Sottile, “Adult mesenchymal stem cells: differentiation potential and therapeutic applications,” Journal of Postgraduate Medicine, vol. 53, no. 2, pp. 121–127, 2007. View at Google Scholar · View at Scopus
  9. C. Krabbe, J. Zimmer, and M. Meyer, “Neural transdifferentiation of mesenchymal stem cells—a critical review,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 113, no. 11-12, pp. 831–844, 2005. View at Publisher · View at Google Scholar
  10. N. H. Zech, “Plasticity of stem cells: cell-fusion versus transdifferentiation,” Journal fur Reproduktionsmedizin und Endokrinologie, vol. 2, no. 4, pp. 239–245, 2005. View at Google Scholar · View at Scopus
  11. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar
  12. M. Reyes, T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie, “Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells,” Blood, vol. 98, no. 9, pp. 2615–2625, 2001. View at Publisher · View at Google Scholar
  13. G. D'Ippolito, S. Diabira, G. A. Howard, P. Menei, B. A. Roos, and P. C. Schiller, “Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential,” Journal of Cell Science, vol. 117, no. 14, pp. 2971–2981, 2004. View at Publisher · View at Google Scholar · View at PubMed
  14. S. Roche, B. Delorme, R. A. J. Oostendorp et al., “Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature,” Proteomics, vol. 9, no. 2, pp. 223–232, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. J. T. Williams, S. S. Southerland, J. Souza, A. F. Calcutt, and R. G. Cartledge, “Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes,” American Surgeon, vol. 65, no. 1, pp. 22–26, 1999. View at Google Scholar
  16. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at PubMed
  17. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar
  18. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at PubMed
  19. C. De Bari, F. Dell'Accio, P. Tylzanowski, and F. P. Luyten, “Multipotent mesenchymal stem cells from adult human synovial membrane,” Arthritis and Rheumatism, vol. 44, no. 8, pp. 1928–1942, 2001. View at Google Scholar
  20. S. A. Kuznetsov, M. H. Mankani, S. Gronthos, K. Satomura, P. Bianco, and P. G. Robey, “Circulating skeletal stem cells,” Journal of Cell Biology, vol. 153, no. 5, pp. 1133–1140, 2001. View at Publisher · View at Google Scholar
  21. P. S. In 't Anker, S. A. Scherjon, C. Kleijburg-van der Keur et al., “Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation,” Blood, vol. 102, no. 4, pp. 1548–1549, 2003. View at Publisher · View at Google Scholar · View at PubMed
  22. C. G. Fan, F. W. Tang, Q. J. Zhang et al., “Characterization and neural differentiation of fetal lung mesenchymal stem cells,” Cell Transplantation, vol. 14, no. 5, pp. 311–321, 2005. View at Google Scholar
  23. C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001. View at Publisher · View at Google Scholar
  24. W. A. Noort, A. B. Kruisselbrink, P. S. In't Anker et al., “Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice,” Experimental Hematology, vol. 30, no. 8, pp. 870–878, 2002. View at Publisher · View at Google Scholar
  25. H. Castro-Malaspina, R. E. Gay, and G. Resnick, “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny,” Blood, vol. 56, no. 2, pp. 289–301, 1980. View at Google Scholar
  26. A. J. Friedenstein, “Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo,” Hamatologie und Bluttransfusion, vol. 25, pp. 19–29, 1980. View at Google Scholar
  27. P. J. Simmons and B. Torok-Storb, “Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1,” Blood, vol. 78, no. 1, pp. 55–62, 1991. View at Google Scholar
  28. W. Vogel, F. Grünebach, C. A. Messam, L. Kanz, W. Brugger, and H. J. Bühring, “Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells,” Haematologica, vol. 88, no. 2, pp. 126–133, 2003. View at Google Scholar
  29. W. P. Hye, J. S. Shin, and C. W. Kim, “Proteome of mesenchymal stem cells,” Proteomics, vol. 7, no. 16, pp. 2881–2894, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. W. Wagner, R. E. Feldmann, A. Seckinger et al., “The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes,” Experimental Hematology, vol. 34, no. 4, pp. 536–548, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. A. D. Ho, W. Wagner, and W. Franke, “Heterogeneity of mesenchymal stromal cell preparations,” Cytotherapy, vol. 10, no. 4, pp. 320–330, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. G. Kasper, L. Mao, S. Geissler et al., “Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton,” Stem Cells, vol. 27, no. 6, pp. 1288–1297, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. S. K. Lee, Y. Kim, S. S. Kim et al., “Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium,” Proteomics, vol. 9, no. 18, pp. 4389–4405, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. D. Wang, J. S. Park, J. S. F. Chu et al., “Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor β1 stimulation,” Journal of Biological Chemistry, vol. 279, no. 42, pp. 43725–43734, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. K. Kurpinski, J. Chu, D. Wang, and S. Li, “Proteomic profiling of mesenchymal stem cell responses to mechanical strain and TGF-β1,” Cellular and Molecular Bioengineering, vol. 2, no. 4, pp. 606–614, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. H. Sarojini, R. Estrada, H. Lu et al., “PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts,” Journal of Cellular Biochemistry, vol. 104, no. 5, pp. 1793–1802, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. H. K. Lee, B. H. Lee, S. A. Park, and C. W. Kim, “The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis,” Proteomics, vol. 6, no. 4, pp. 1223–1229, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. AH. J. Ju, K. M. Ko, S. P. Hyung et al., “Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis,” Proteomics, vol. 7, no. 22, pp. 4181–4191, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. C. Chiellini, O. Cochet, L. Negroni et al., “Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation,” BMC Molecular Biology, vol. 9, article 26, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. I. B. Copland, S. Lord-Dufour, J. Cuerquis et al., “Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition,” Stem Cells, vol. 27, no. 2, pp. 467–477, 2009. View at Publisher · View at Google Scholar
  41. H. J. Sun, Y. Y. Bahk, Y. R. Choi, J. H. Shim, S. H. Han, and J. W. Lee, “A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell,” Journal of Orthopaedic Research, vol. 24, no. 11, pp. 2059–2071, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. L. J. Foster, P. A. Zeemann, C. Li, M. Mann, O. N. Jensen, and M. Kassem, “Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation,” Stem Cells, vol. 23, no. 9, pp. 1367–1377, 2005. View at Publisher · View at Google Scholar · View at PubMed
  43. I. Kratchmarova, B. Blagoev, M. Haack-Sorensen, M. Kassem, and M. Mann, “Cell Signalling: mechanism of divergent growth factor effects in mesenchymal stem cell differentiation,” Science, vol. 308, no. 5727, pp. 1472–1477, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. P. J. Mishra, P. J. Mishra, J. W. Glod, and D. Banerjee, “Mesenchymal stem cells: flip side of the coin,” Cancer Research, vol. 69, no. 4, pp. 1255–1258, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. M. Battiwalla and P. Hematti, “Mesenchymal stem cells in hematopoietic stem cell transplantation,” Cytotherapy, vol. 11, no. 5, pp. 503–515, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. E. H. Lin, Y. Jiang, Y. Deng, R. Lapsiwala, T. Lin, and C. A. Blau, “Cancer stem cells, endothelial progenitors, and mesenchymal stem cells: "seed and soil" theory revisited,” Gastrointestinal Cancer Research, vol. 2, no. 4, pp. 169–174, 2008. View at Google Scholar
  47. R. E. Feldmann, K. Bieback, M. H. Maurer et al., “Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood,” Electrophoresis, vol. 26, no. 14, pp. 2749–2758, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. Seshi, “An integrated approach to mapping the proteome of the human bone marrow stromal cell,” Proteomics, vol. 6, no. 19, pp. 5169–5182, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. B. Seshi, “Proteomics strategy based on liquid-phase IEF and 2-D DIGE: application to bone marrow mesenchymal progenitor cells,” Proteomics, vol. 7, no. 12, pp. 1984–1999, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Bieback, S. Kern, H. Klüter, and H. Eichler, “Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood,” Stem Cells, vol. 22, no. 4, pp. 625–634, 2004. View at Google Scholar
  51. M. H. Maurer, “Neural stem cells: a functional definition based on proteomics,” Electronic Journal of Biology, vol. 4, no. 2, pp. 43–46, 2008. View at Google Scholar
  52. JU. A. Jeong, Y. Lee, W. Lee et al., “Proteomic analysis of the hydrophobic fraction of mesenchymal stem cells derived from human umbilical cord blood,” Molecules and Cells, vol. 22, no. 1, pp. 36–43, 2006. View at Google Scholar
  53. G. Li, X. A. Zhang, H. Wang et al., “Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration,” Proteomics, vol. 9, no. 1, pp. 20–30, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. C. Fania, L. Anastasia, M. Vasso et al., “Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: possible associations with cell signalling networks,” Electrophoresis, vol. 30, no. 12, pp. 2193–2206, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. I. L. Weissman, “Stem cells: units of development, units of regeneration, and units in evolution,” Cell, vol. 100, no. 1, pp. 157–168, 2000. View at Google Scholar
  56. A. J. Wagers and I. L. Weissman, “Plasticity of adult stem cells,” Cell, vol. 116, no. 5, pp. 639–648, 2004. View at Publisher · View at Google Scholar
  57. E. L. Herzog, LI. Chai, and D. S. Krause, “Plasticity of marrow-derived stem cells,” Blood, vol. 102, no. 10, pp. 3483–3493, 2003. View at Publisher · View at Google Scholar · View at PubMed
  58. D. E. Discher, D. J. Mooney, and P. W. Zandstra, “Growth factors, matrices, and forces combine and control stem cells,” Science, vol. 324, no. 5935, pp. 1673–1677, 2009. View at Publisher · View at Google Scholar · View at PubMed
  59. F. Ng, S. Boucher, S. Koh et al., “PDGF, tgf-. And FGF signaling is important for differentiation and growth of mesenchymal stem cells (mscs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages,” Blood, vol. 112, no. 2, pp. 295–307, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. F. Deschaseaux, L. Sensébé, and D. Heymann, “Mechanisms of bone repair and regeneration,” Trends in Molecular Medicine, vol. 15, no. 9, pp. 417–429, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. W. Han, Y. Yu, and Y. L. Xin, “Local signals in stem cell-based bone marrow regeneration,” Cell Research, vol. 16, no. 2, pp. 189–195, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. M. H. Maurer, W. R. Schäbitz, and A. Schneider, “Old friends in new constellations—the hematopoetic growth factors G-CSF, GM-CSF, and EPO for the treatment of neurological diseases,” Current Medicinal Chemistry, vol. 15, no. 14, pp. 1407–1411, 2008. View at Publisher · View at Google Scholar
  63. J. E. Dennis and P. Charbord, “Origin and differentiation of human and murine stroma,” Stem Cells, vol. 20, no. 3, pp. 205–214, 2002. View at Google Scholar
  64. S. M. Richardson, J. A. Hoyland, R. Mobasheri, C. Csaki, M. Shakibaei, and A. Mobasheri, “Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering,” Journal of Cellular Physiology, vol. 222, no. 1, pp. 23–32, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. S. Fruehauf, K. Srbic, R. Seggewiss, J. Topaly, and A. D. Ho, “Functional characterization of podia formation in normal and malignant hematopoietic cells,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 425–432, 2002. View at Google Scholar
  66. S. R. Farmer, “Transcriptional control of adipocyte formation,” Cell Metabolism, vol. 4, no. 4, pp. 263–273, 2006. View at Publisher · View at Google Scholar · View at PubMed
  67. D. Benayahu, U. D. Akavia, and I. Shur, “Differentiation of bone marrow stroma-derived mesenchymal cells,” Current Medicinal Chemistry, vol. 14, no. 2, pp. 173–179, 2007. View at Publisher · View at Google Scholar
  68. D. Benayahu, G. Shefer, and I. Shur, “Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues,” Annals of Anatomy, vol. 191, no. 1, pp. 2–12, 2009. View at Publisher · View at Google Scholar · View at PubMed
  69. C. S. Soltanoff, S. Yang, W. Chen, and YI. P. Li, “Signaling networks that control the lineage commitment and differentiation of bone cells,” Critical Reviews in Eukaryotic Gene Expression, vol. 19, no. 1, pp. 1–46, 2009. View at Google Scholar
  70. K. Ksiazek, “A comprehensive review on mesenchymal stem cell growth and senescence,” Rejuvenation Research, vol. 12, no. 2, pp. 105–116, 2009. View at Publisher · View at Google Scholar · View at PubMed