Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 217910, 9 pages
http://dx.doi.org/10.1155/2012/217910
Review Article

Ion Channels in Hematopoietic and Mesenchymal Stem Cells

1Department of Experimental Pathology and Oncology, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy

Received 28 May 2012; Accepted 5 July 2012

Academic Editor: Stefan Liebau

Copyright © 2012 Serena Pillozzi and Andrea Becchetti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dejosez and T. P. Zwaka, “Pluripotency and nuclear reprogramming,” Annual Reviews of Biochemistry, vol. 81, pp. 737–765, 2012. View at Publisher · View at Google Scholar
  2. H. Suh, W. Deng, and F. H. Gage, “Signaling in adult neurogenesis,” Annual Review of Cell and Developmental Biology, vol. 25, pp. 253–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. R. Alison, W. R. Lin, S. M. Lim, and L. J. Nicholson, “Cancer stem cells: in the line of fire,” Cancer Treatment Reviews, vol. 38, no. 6, pp. 589–598, 2012. View at Publisher · View at Google Scholar
  4. A. Arcangeli, O. Crociani, E. Lastraioli, A. Masi, S. Pillozzi, and A. Becchetti, “Targeting ion channels in cancer: a novel frontier in antineoplastic therapy,” Current Medicinal Chemistry, vol. 16, no. 1, pp. 66–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Blackiston, K. A. McLaughlin, and M. Levin, “Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle,” Cell Cycle, vol. 8, no. 21, pp. 3519–3528, 2009. View at Google Scholar · View at Scopus
  6. M. D. Cahalan and K. G. Chandy, “The functional network of ion channels in T lymphocytes,” Immunological Reviews, vol. 231, no. 1, pp. 59–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Arcangeli, S. Pillozzi, and A. Becchetti, “Ion channels: novel functional hubs in leukemia,” in Current Cancer Treatment—Novel Beyond Conventional Approaches, O. Ozdemir, Ed., pp. 227–254, InTech, 2011. View at Google Scholar
  8. A. Becchetti, “Ion channels and transporters in cancer. 1. Ion channels and cell proliferationin cancer,” American Journal of Physiology, vol. 301, no. 2, pp. C255–C265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Rosenberg and N. Spitzer, “Calcium signaling in neuronal development,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 10, Article ID a004259. View at Publisher · View at Google Scholar
  10. A. Darszon, T. Nishigaki, C. Beltran, and C. L. Treviño, “Calcium channels in the development, maturation, and function of spermatozoa,” Physiological Reviews, vol. 91, no. 4, pp. 1305–1355, 2011. View at Publisher · View at Google Scholar
  11. E. Shumilina, S. M. Huber, and F. Lang, “Ca2+ signaling in the regulation of dendritic cell functions,” American Journal of Physiology, vol. 300, no. 6, pp. C1205–C1214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Morokuma, D. Blackiston, D. S. Adams, G. Seebohm, B. Trimmer, and M. Levin, “Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16608–16613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Andäng, J. Hjerling-Leffler, A. Moliner et al., “Histone H2AX-dependent GABAA receptor regulation of stem cell proliferation,” Nature, vol. 451, no. 7177, pp. 460–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. K. Hoffmann, I. H. Lambert, and S. F. Pedersen, “Physiology of cell volume regulation in vertebrates,” Physiological Reviews, vol. 89, no. 1, pp. 193–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Cuddapah and H. Sontheimer, “Ion channels and transporters in cancer. 2. Ion channels and the control of cancer cell migration,” American Journal of Physiology, vol. 301, no. 3, pp. C541–C549, 2011. View at Google Scholar
  16. M. Levite, L. Cahalon, A. Peretz et al., “Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1167–1176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Cherubini, G. Hofmann, S. Pillozzi et al., “Human ether-a-go-go-related gene 1 channels are physically linked to β1 integrins and modulate adhesion-dependent signaling,” Molecular Biology of the Cell, vol. 16, no. 6, pp. 2972–2983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Wei, L. Wei, X. Zhou et al., “Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility,” Journal of Cellular Physiology, vol. 217, no. 2, pp. 544–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Pillozzi, M. F. Brizzi, P. A. Bernabei et al., “VEGFR-1 (FLT-1), β1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome,” Blood, vol. 110, no. 4, pp. 1238–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Becchetti, S. Pillozzi, R. Morini, E. Nesti, and A. Arcangeli, “New insights into the regulation of ion channels by integrins,” International Review of Cell and Molecular Biology, vol. 279, pp. 135–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. M. Pietras, M. R. Warr, and E. Passegué, “Cell cycle regulation in hematopoietic stem cells,” Journal of Cell Biology, vol. 195, no. 5, pp. 709–720, 2011. View at Publisher · View at Google Scholar
  22. G. Costa, V. Kouskoff, and G. Lacaud, “Origin of blood cells and HSC production in the embryo,” Trends in Immunology, vol. 33, no. 5, pp. 215–223, 2012. View at Publisher · View at Google Scholar
  23. S. N. Catlin, L. Busque, R. E. Gale, P. Guttorp, and J. L. Abkowitz, “The replication rate of human hematopoietic stem cells in vivo,” Blood, vol. 117, no. 17, pp. 4460–4466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Bowie, K. D. McKnight, D. G. Kent, L. McCaffrey, P. A. Hoodless, and C. J. Eaves, “Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect,” The Journal of Clinical Investigation, vol. 116, no. 10, pp. 2808–2816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Medvinsky, S. Rybtsov, and S. Taoudi, “Embryonic origin of the adult hematopoietic system: advances and questions,” Development, vol. 138, no. 6, pp. 1017–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Soligo, R. Schiró, R. Luksch et al., “Expression of integrins in human bone marrow,” British Journal of Haematology, vol. 76, no. 3, pp. 323–332, 1990. View at Google Scholar · View at Scopus
  27. E. B. Voura, F. Billia, N. N. Iscove, and R. G. Hawley, “Expression mapping of adhesion receptor genes during differentiation of individual hematopoietic precursors,” Experimental Hematology, vol. 25, no. 11, pp. 1172–1179, 1997. View at Google Scholar · View at Scopus
  28. L. M. Scott, G. V. Priestley, and T. Papayannopoulou, “Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 9349–9360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. C. Forsberg and S. Smith-Berdan, “Parsing the niche code: the molecular mechanisms governing hematopoietic stem cell adhesion and differentiation,” Haematologica, vol. 94, no. 11, pp. 1477–1481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Orbay, M. Tobita, and H. Mizuno, “Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications,” Stem Cells International, vol. 2012, Article ID 461718, 9 pages, 2012. View at Publisher · View at Google Scholar
  31. Z. J. Liu, Y. Zhuge, and O. C. Velazquez, “Trafficking and differentiation of mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 106, no. 6, pp. 984–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. F. Heubach, E. M. Graf, J. Leutheuser et al., “Electrophysiological properties of human mesenchymal stem cells,” Journal of Physiology, vol. 554, no. 3, pp. 659–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. G. R. Li, H. Sun, X. Deng, and C. P. Lau, “Characterization of ionic currents in human mesenchymal stem cells from bone marrow,” Stem Cells, vol. 23, no. 3, pp. 371–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Wang, X. Qu, and R. C. Zhao, “Clinical applications of mesenchymal stem cells,” Journal of Hematology & Oncology, vol. 5, article 19, 2012. View at Publisher · View at Google Scholar
  37. O. Shirihai, S. Merchav, B. Attali, and D. Dagan, “K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors,” Pflügers Archiv European Journal of Physiology, vol. 431, no. 4, pp. 632–638, 1996. View at Google Scholar · View at Scopus
  38. O. Shirihai, B. Attali, D. Dagan, and S. Merchav, “Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells,” Journal of Cellular Physiology, vol. 177, no. 2, pp. 197–205, 1998. View at Google Scholar
  39. J. H. Nam, D. H. Shin, H. Zheng et al., “Expression of TASK-2 and its upregulation by B cell receptor stimulation in WEHI-231 mouse immature B cells,” American Journal of Physiology, vol. 300, no. 5, pp. C1013–C1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. S. Park, B. Pang, S. J. Park et al., “Identification and functional characterization of ion channels in CD34+ hematopoietic stem cells from human peripheral blood,” Molecules and Cells, vol. 32, no. 2, pp. 181–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Arcangeli, “Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk,” American Journal of Physiology, vol. 301, no. 4, pp. C762–C771, 2011. View at Publisher · View at Google Scholar
  42. G. Hofmann, P. A. Bernabei, O. Crociani et al., “HERG K+ channels activation during β1 integrin-mediated adhesion to fibronectin induces an up-regulation of αvβ3 integrin in the preosteoclastic leukemia cell line FLG 29.1,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4923–4931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Pillozzi, M. F. Brizzi, M. Balzi et al., “HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors,” Leukemia, vol. 16, no. 9, pp. 1791–1798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. G. A. M. Smith, H. W. Tsui, E. W. Newell et al., “Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells,” The Journal of Biological Chemistry, vol. 277, no. 21, pp. 18528–18534, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Li, L. Liu, L. Guo et al., “HERG K+ channel expression in CD34+/CD38-/CD123high cells and primary leukemia cells and analysis of its regulation in leukemia cells,” International Journal of Hematology, vol. 87, no. 4, pp. 387–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Wessler and C. J. Kirkpatrick, “Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans,” British Journal of Pharmacology, vol. 154, no. 8, pp. 1558–1571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Ambrosi and A. Becchetti, “Targeting neuronal nicotinic receptors in cancer: new ligands and potential side-effects,” Recent Patents on Anticancer Drug Discovery. In press.
  48. C. I. Amos, X. Wu, P. Broderick et al., “Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1,” Nature Genetics, vol. 40, no. 5, pp. 616–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Hung, J. D. McKay, V. Gaborieau et al., “A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25,” Nature, vol. 452, no. 7187, pp. 633–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. T. E. Thorgeirsson, F. Geller, P. Sulem et al., “A variant associated with nicotine dependence, lung cancer and peripheral arterial disease,” Nature, vol. 452, no. 7187, pp. 638–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. G. Cattaneo, A. Codignola, L. M. Vicentini, F. Clementi, and E. Sher, “Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma,” Cancer Research, vol. 53, no. 22, pp. 5566–5568, 1993. View at Google Scholar · View at Scopus
  52. E. Martínez-García, M. Irigoyen, E. Ansó, J. J. Martínez-Irujo, and A. Rouzaut, “Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation,” Toxicology and Applied Pharmacology, vol. 228, no. 3, pp. 334–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. E. A. Putnam, N. Yen, G. E. Gallick et al., “Autocrine growth stimulation by transforming growth factor-α in human non-small cell lung cancer,” Surgical Oncology, vol. 1, no. 1, pp. 49–60, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. A. I. Chernyavsky, J. Arredondo, V. Galitovskiy, J. Qian, and S. A. Grando, “Upregulation of nuclear factor-κB expression by SLURP-1 is mediated by α7-nicotinic acetylcholine receptor and involves both ionic events and activation of protein kinases,” American Journal of Physiology, vol. 299, no. 5, pp. C903–C911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Corre, J. Lellouch, and D. Schwartz, “Smoking and leucocyte-counts. Results of an epidemiological survey,” The Lancet, vol. 2, no. 7725, pp. 632–634, 1971. View at Google Scholar · View at Scopus
  56. D. Sparrow, R. J. Glynn, M. Cohen, and S. T. Weiss, “The relationship of the peripheral leukocyte count and cigarette smoking to pulmonary function among adult men,” Chest, vol. 86, no. 3, pp. 383–386, 1984. View at Google Scholar · View at Scopus
  57. E. J. Jensen, B. Pedersen, R. Frederiksen, and R. Dahl, “Prospective study on the effect of smoking and nicotine substitution on leucocyte blood counts and relation between blood leucocytes and lung function,” Thorax, vol. 53, no. 9, pp. 784–789, 1998. View at Google Scholar · View at Scopus
  58. E. Chang, E. C. Forsberg, J. Wu et al., “Cholinergic activation of hematopoietic stem cells: role in tobacco-related disease?” Vascular Medicine, vol. 15, no. 5, pp. 375–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. S. Pandit, L. Sikora, G. Muralidhar, S. P. Rao, and P. Sriramarao, “Sustained exposure to nicotine leads to extramedullary hematopoiesis in the spleen,” Stem Cells, vol. 24, no. 11, pp. 2373–2381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. L. M. Koval, A. S. Zverkova, R. Grailhe et al., “Nicotinic acetylcholine receptors alpha4beta2 and alpha7 regulate myelo- and erythropoiesis within the bone marrow,” International Journal of Biochemistry & Cell Biology, vol. 40, no. 5, pp. 980–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. I. Caplan and S. P. Bruder, “Mesenchymal stem cells: building blocks for molecular medicine in the 21st century,” Trends in Molecular Medicine, vol. 7, no. 6, pp. 259–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Kawano, S. Shoji, S. Ichinose, K. Yamagata, M. Tagami, and M. Hiraoka, “Characterization of Ca2+ signaling pathways in human mesenchymal stem cells,” Cell Calcium, vol. 32, no. 4, pp. 165–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Kawano, K. Otsu, S. Shoji, K. Yamagata, and M. Hiraoka, “Ca2+ oscillations regulated by Na+-Ca2+ exchanger and plasma membrane Ca2+ pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells,” Cell Calcium, vol. 34, no. 2, pp. 145–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Ye, “Ca2+ oscillations and its transporters in mesenchymal stem cells,” Physiological Research, vol. 59, no. 3, pp. 323–329, 2010. View at Google Scholar · View at Scopus
  66. I. Zahanich, E. M. Graf, J. F. Heubach, U. Hempel, S. Boxberger, and U. Ravens, “Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells,” Journal of Bone and Mineral Research, vol. 20, no. 9, pp. 1637–1646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Kawano, K. Otsu, A. Kuruma et al., “ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells,” Cell Calcium, vol. 39, no. 4, pp. 313–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Di Resta and A. Becchetti, “Introduction to ion channels,” Advances in Experimental Medicine and Biology, vol. 674, pp. 9–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Diehlmann, S. Bork, R. Saffrich, R. W. Veh, W. Wagner, and C. Derst, “KATP channels in mesenchymal stromal stem cells: strong up-regulation of Kir6.2 subunits upon osteogenic differentiation,” Tissue and Cell, vol. 43, no. 5, pp. 331–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. R. Li, X. L. Deng, H. Sun, S. S. M. Chung, H. F. Tse, and C. P. Lau, “Ion channels in mesenchymal stem cells from rat bone marrow,” Stem Cells, vol. 24, no. 6, pp. 1519–1528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. X. L. Deng, C. P. Lau, K. Lai, K. F. Cheung, G. K. Lau, and G. R. Li, “Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow,” Cell Proliferation, vol. 40, no. 5, pp. 656–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. S. P. Wang, J. A. Wang, R. H. Luo, W. Y. Cui, and H. Wang, “Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 9, pp. 1077–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Tao, C. P. Lau, H. F. Tse, and G. R. Li, “Functional ion channels in mouse bone marrow mesenchymal stem cells,” American Journal of Physiology, vol. 293, no. 5, pp. C1561–C1567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Tao, C. P. Lau, H. F. Tse, and G. R. Li, “Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells,” American Journal of Physiology, vol. 295, no. 5, pp. C1409–C1416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. K. G. Chandy, H. Wulff, C. Beeton, M. Pennington, G. A. Gutman, and M. D. Cahalan, “K+ channels as targets for specific immunomodulation,” Trends in Pharmacological Sciences, vol. 25, no. 5, pp. 280–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Varga, T. Juhász, C. Matta et al., “Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+-oscillations and cartilage formation,” PLoS ONE, vol. 6, no. 11, Article ID e27957, 2011. View at Google Scholar
  77. X. Hu, L. Wei, T. M. Taylor et al., “Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation,” American Journal of Physiology, vol. 301, no. 2, pp. C362–C372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. K. S. Park, K. H. Jung, S. H. Kim et al., “Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein,” Stem Cells, vol. 25, no. 8, pp. 2044–2052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Zhang, Y. C. Chan, J. C. Ho, C. W. Siu, Q. Lian, and H. F. Tse, “Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel,” American Journal of Physiology, vol. 303, no. 2, pp. C115–C125, 2012. View at Google Scholar
  80. L. A. Pardo, D. del Camino, A. Sánchez et al., “Oncogenic potential of EAG K+ channels,” The EMBO Journal, vol. 18, no. 20, pp. 5540–5547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Arcangeli, B. Rosati, A. Cherubini et al., “HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives,” European Journal of Neuroscience, vol. 9, no. 12, pp. 2596–2604, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. E. A. Berger, P. M. Murphy, and J. M. Farber, “Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease,” Annual Review of Immunology, vol. 17, pp. 657–700, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. Z. Zeng, I. J. Samudio, M. Munsell et al., “Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias,” Molecular Cancer Therapeutics, vol. 5, no. 12, pp. 3113–3121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Manabe, K. G. Murti, E. Coustan-Smith et al., “Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells,” Blood, vol. 83, no. 3, pp. 758–766, 1994. View at Google Scholar · View at Scopus
  85. M. Konopleva, S. Konoplev, W. Hu, A. Y. Zaritskey, B. V. Afanasiev, and M. Andreeff, “Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins,” Leukemia, vol. 16, no. 9, pp. 1713–1724, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Panayiotidis, D. Jones, K. Ganeshaguru, L. Foroni, and A. V. Hoffbrand, “Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro,” British Journal of Haematology, vol. 92, no. 1, pp. 97–103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Lagneaux, A. Delforge, D. Bron, C. De Bruyn, and P. Stryckmans, “Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells,” Blood, vol. 91, no. 7, pp. 2387–2396, 1998. View at Google Scholar · View at Scopus
  88. J. A. Burger, N. Tsukada, M. Burger, N. J. Zvaifler, M. Dell'Aquila, and T. J. Kipps, “Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1,” Blood, vol. 96, no. 8, pp. 2655–2663, 2000. View at Google Scholar · View at Scopus
  89. E. Weisberg, R. D. Wright, D. W. McMillin et al., “Stromal-mediated protection of tyrosine kinase inhibitor-treated BCR-ABL-expressing leukemia cells,” Molecular Cancer Therapeutics, vol. 7, no. 5, pp. 1121–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Pillozzi, M. Masselli, E. De Lorenzo et al., “Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers,” Blood, vol. 117, no. 3, pp. 902–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Kondo, M. Hayashi, K. Takeshita et al., “Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1442–1447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. M. J. Hoogduijn, A. Cheng, and P. G. Genever, “Functional nicotinic and muscarinic receptors on mesenchymal stem cells,” Stem Cells and Development, vol. 18, no. 1, pp. 103–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. I. U. Schraufstatter, R. G. DiScipio, and S. K. Khaldoyanidi, “Alpha 7 subunit of nAChR regulates migration of human mesenchymal stem cells,” Journal of Stem Cells, vol. 4, no. 4, pp. 203–216, 2010. View at Google Scholar · View at Scopus
  94. A. I. Chernyavsky, J. Arrendondo, L. M. Marubio, and S. A. Grando, “Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes,” Journal of Cell Science, vol. 117, no. 23, pp. 5665–5679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Arcangeli and A. Becchetti, “New trends in cancer therapy: targeting ion channels and transporters,” Pharmaceuticals, vol. 3, no. 4, pp. 1202–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus