Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 365932, 8 pages
http://dx.doi.org/10.1155/2012/365932
Review Article

Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain

Received 5 January 2012; Accepted 29 March 2012

Academic Editor: Paul Verma

Copyright © 2012 Gaskon Ibarretxe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Silva and A. Smith, “Capturing pluripotency,” Cell, vol. 132, no. 4, pp. 532–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Camporesi, “The context of embryonic development and its ethical relevance,” Biotechnology Journal, vol. 2, no. 9, pp. 1147–1153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Z. Zhu, B. Van Biber, and M. A. Laflamme, “Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells,” Methods in Molecular Biology, vol. 767, pp. 419–431, 2011. View at Google Scholar
  4. K. H. S. Campbell, J. McWhir, W. A. Ritchie, and I. Wilmut, “Sheep cloned by nuclear transfer from a cultured cell line,” Nature, vol. 380, no. 6569, pp. 64–66, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Atala, “Engineering organs,” Current Opinion in Biotechnology, vol. 20, no. 5, pp. 575–592, 2009. View at Google Scholar
  9. K. Hug, “Sources of human embryos for stem cell research: ethical problems and their possible solutions,” Medicina, vol. 41, no. 12, pp. 1002–1010, 2005. View at Google Scholar · View at Scopus
  10. V. J. Hall, D. Compton, P. Stojkovic et al., “Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer,” Human Reproduction, vol. 22, no. 1, pp. 52–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Solter, “Mammalian cloning: advances and limitations,” Nature Reviews Genetics, vol. 1, no. 3, pp. 199–207, 2000. View at Google Scholar · View at Scopus
  12. L. Armstrong and M. Lako, “The future of human nuclear transfer?” Stem Cell Reviews, vol. 2, no. 4, pp. 351–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Yamanaka and H. M. Blau, “Nuclear reprogramming to a pluripotent state by three approaches,” Nature, vol. 465, no. 7299, pp. 704–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Stadtfeld and K. Hochedlinger, “Induced pluripotency: history, mechanisms, and applications,” Genes and Development, vol. 24, no. 20, pp. 2239–2263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Okita and S. Yamanaka, “Induction of pluripotency by defined factors,” Experimental Cell Research, vol. 316, no. 16, pp. 2565–2570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Plath and W. E. Lowry, “Progress in understanding reprogramming to the induced pluripotent state,” Nature Reviews Genetics, vol. 12, no. 4, pp. 253–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Yu and J. A. Thomson, “Pluripotent stem cell lines,” Genes and Development, vol. 22, no. 15, pp. 1987–1997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Chin, M. J. Mason, W. Xie et al., “Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures,” Cell Stem Cell, vol. 5, no. 1, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Newman and J. B. Cooper, “Lab-specific gene expression signatures in pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 2, pp. 258–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Y. Hu, J. P. Weick, J. Yu et al., “Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4335–4340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Feng, S. J. Lu, I. Klimanskaya et al., “Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence,” Stem Cells, vol. 28, no. 4, pp. 704–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Brambrink, R. Foreman, G. G. Welstead et al., “Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells,” Cell Stem Cell, vol. 2, no. 2, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Utikal, J. M. Polo, M. Stadtfeld et al., “Immortalization eliminates a roadblock during cellular reprogramming into iPS cells,” Nature, vol. 460, no. 7259, pp. 1145–1148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Krizhanovsky and S. W. Lowe, “Stem cells: the promises and perils of p53,” Nature, vol. 460, no. 7259, pp. 1085–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Nakagawa, M. Koyanagi, K. Tanabe et al., “Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts,” Nature Biotechnology, vol. 26, no. 1, pp. 101–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Martinez-Fernandez, T. J. Nelson, Y. Ikeda, and A. Terzic, “C-MYC-independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells,” Journal of Cardiovascular Translational Research, vol. 3, no. 1, pp. 13–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, “Induced pluripotent stem cells generated without viral integration,” Science, vol. 322, no. 5903, pp. 945–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen, “Virus-free induction of pluripotency and subsequent excision of reprogramming factors,” Nature, vol. 458, no. 7239, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Kim, C. H. Kim, J. I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. Lyssiotis, R. K. Foreman, J. Staerk et al., “Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 22, pp. 8912–8917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. B. Kim, B. Greber, M. J. Arazo-Bravo et al., “Direct reprogramming of human neural stem cells by OCT4,” Nature, vol. 461, no. 7264, pp. 649–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Y. Tsai, B. A. Bouwman, Y. S. Ang et al., “Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells,” Stem Cells, vol. 29, no. 6, pp. 964–971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Grafi, “The complexity of cellular dedifferentiation: implications for regenerative medicine,” Trends in Biotechnology, vol. 27, no. 6, pp. 329–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Ou, X. Wang, and F. Zou, “Is iPS cell the panacea?” IUBMB Life, vol. 62, no. 3, pp. 170–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Cortesini, “Stem cells, tissue engineering and organogenesis in transplantation,” Transplant Immunology, vol. 15, no. 2, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Baino and C. Vitale-Brovarone, “Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future,” Journal of Biomedical Materials Research Part A, vol. 97, no. 4, pp. 514–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. U. A. Stock and J. P. Vacanti, “Tissue engineering: current state and prospects,” Annual Review of Medicine, vol. 52, pp. 443–451, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. W. Chun and T. J. Webster, “The role of nanomedicine in growing tissues,” Annals of Biomedical Engineering, vol. 37, no. 10, pp. 2034–2047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. M. M. T. van Hout, A. B. M. van der Molen, C. C. Breugem, R. Koole, and E. M. van Cann, “Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2,” Clinical Oral Investigations, vol. 15, no. 3, pp. 297–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. W. Nichol and A. Khademhosseini, “Modular tissue engineering: engineering biological tissues from the bottom up,” Soft Matter, vol. 5, no. 7, pp. 1312–1319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. S. Hwang, S. Varghese, and J. Elisseeff, “Controlled differentiation of stem cells,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 199–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. E. Discher, D. J. Mooney, and P. W. Zandstra, “Growth factors, matrices, and forces combine and control stem cells,” Science, vol. 324, no. 5935, pp. 1673–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Zhu, “Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering,” Biomaterials, vol. 31, no. 17, pp. 4639–4656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Zippel, M. Schulze, and E. Tobiasch, “Biomaterials and mesenchymal stem cells for regenerative medicine,” Recent Patents on Biotechnology, vol. 4, no. 1, pp. 1–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, “Tissue-engineered autologous bladders for patients needing cystoplasty,” Lancet, vol. 367, no. 9518, pp. 1241–1246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. F. D. Pagani, H. DerSimonian, A. Zawadzka et al., “Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans: histological analysis of cell survival and differentiation,” Journal of the American College of Cardiology, vol. 41, no. 5, pp. 879–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Miura, S. Gronthos, M. Zhao et al., “SHED: stem cells from human exfoliated deciduous teeth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5807–5812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. B. M. Seo, M. Miura, S. Gronthos et al., “Investigation of multipotent postnatal stem cells from human periodontal ligament,” Lancet, vol. 364, no. 9429, pp. 149–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. G. T. J. Huang, W. Sonoyama, Y. Liu, H. Liu, S. Wang, and S. Shi, “The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering,” Journal of Endodontics, vol. 34, no. 6, pp. 645–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Morsczeck, W. Götz, J. Schierholz et al., “Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth,” Matrix Biology, vol. 24, no. 2, pp. 155–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. T. J. Huang, S. Gronthos, and S. Shi, “Mesenchymal stem cells derived from dental tissues versus those from other sources: their biology and role in regenerative medicine,” Journal of Dental Research, vol. 88, no. 9, pp. 792–806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Atari, M. Barajas, F. Hernández-Alfaro, C. Gil, M. Fabregat, and E. Ferrés Padró, “Isolation of pluripotent stem cells from human third molar dental pulp,” Histology and Histopathology, vol. 26, no. 8, pp. 1057–1070, 2011. View at Google Scholar
  60. N. Wada, B. Wang, N. H. Lin, A. L. Laslett, S. Gronthos, and P. M. Bartold, “Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts,” Journal of Periodontal Research, vol. 46, no. 4, pp. 438–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. X. Yan, H. Qin, C. Qu, R. S. Tuan, S. Shi, and G. T. J. Huang, “iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin,” Stem Cells and Development, vol. 19, no. 4, pp. 469–480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Egusa, K. Okita, H. Kayashima et al., “Gingival fibroblasts as a promising source of induced pluripotent stem cells,” PloS ONE, vol. 5, no. 9, article e12743, 2010. View at Google Scholar · View at Scopus
  63. A. A. Volponi, Y. Pang, and P. T. Sharpe, “Stem cell-based biological tooth repair and regeneration,” Trends in Cell Biology, vol. 20, no. 12, pp. 715–722, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Nanci, Ten Cate's Oral Histology: Development, Structure, and Function, Mosby, London, UK, 7th edition, 2008.
  65. G. T. J. Huang, T. Yamaza, L. D. Shea et al., “Stem/Progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model,” Tissue Engineering Part A, vol. 16, no. 2, pp. 605–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Sonoyama, Y. Liu, D. Fang et al., “Mesenchymal stem cell-mediated functional tooth regeneration in Swine,” PLoS ONE, vol. 1, no. 1, article e79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Ikeda, R. Morita, K. Nakao et al., “Fully functional bioengineered tooth replacement as an organ replacement therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13475–13480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Shinmura, S. Tsuchiya, K. I. Hata, and M. J. Honda, “Quiescent epithelial cell rests of malassez can differentiate into ameloblast-like cells,” Journal of Cellular Physiology, vol. 217, no. 3, pp. 728–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Nakagawa, T. Itoh, H. Yoshie, and I. Satokata, “Odontogenic potential of post-natal oral mucosal epithelium,” Journal of Dental Research, vol. 88, no. 3, pp. 219–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. T. A. Mitsiadis, O. Barrandon, A. Rochat, Y. Barrandon, and C. De Bari, “Stem cell niches in mammals,” Experimental Cell Research, vol. 313, no. 16, pp. 3377–3385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Seifinejad, M. Tabebordbar, H. Baharvand, L. A. Boyer, and G. H. Salekdeh, “Progress and promise towards safe induced pluripotent stem cells for therapy,” Stem Cell Reviews and Reports, vol. 6, no. 2, pp. 297–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. O. Tsuji, K. Miura, Y. Okada et al., “Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12704–12709, 2010. View at Publisher · View at Google Scholar · View at Scopus