Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 429160, 9 pages
http://dx.doi.org/10.1155/2012/429160
Research Article

Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC

1Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, VIC 3800, Australia
2Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
3Stem Cell Technologies i (SCTi), Gleneagles Medical Centre, Singapore 258499
4Gribbles Veterinary, Clayton, VIC 3168, Australia
5South Australian Research Institute (SARDI), Turretfield Research Centre, Rosedale, SA 5350, Australia

Received 9 November 2011; Revised 28 December 2011; Accepted 3 January 2012

Academic Editor: Rajarshi Pal

Copyright © 2012 Khodadad Khodadadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. B. P. Paris and T. A. E. Stout, “Equine embryos and embryonic stem cells: defining reliable markers of pluripotency,” Theriogenology, vol. 74, no. 4, pp. 516–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. C. Kemp, J. Hows, and C. Donaldson, “Bone marrow-derived mesenchymal stem cells,” Leukemia and Lymphoma, vol. 46, no. 11, pp. 1531–1544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Weiss and D. L. Troyer, “Stem cells in the umbilical cord,” Stem Cell Reviews, vol. 2, no. 2, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. N. Helder, M. Knippenberg, J. Klein-Nulend, and P. I. J. M. Wuisman, “Stem cells from adipose tissue allow challenging new concepts for regenerative medicine,” Tissue Engineering, vol. 13, no. 8, pp. 1799–1808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. S. Yoon, N. Lee, and H. Scadova, “Myocardial regeneration with bone-marrow-derived stem cells,” Biology of the Cell, vol. 97, no. 4, pp. 253–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. L. Holtorf, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos, “Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics,” Annals of Biomedical Engineering, vol. 33, no. 9, pp. 1238–1248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Bernardo, J. A. M. Emons, M. Karperien et al., “Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources,” Connective Tissue Research, vol. 48, no. 3, pp. 132–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. W. Smith, M. Korda, G. W. Blunn, and A. E. Goodship, “Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment,” Equine Veterinary Journal, vol. 35, no. 1, pp. 99–102, 2003. View at Google Scholar · View at Scopus
  9. S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda, “Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 199–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Violini, P. Ramelli, L. F. Pisani, C. Gorni, and P. Mariani, “Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12,” BMC Cell Biology, vol. 10, article no. 29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Saito, H. Ugai, K. Sawai et al., “Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro,” FEBS Letters, vol. 531, no. 3, pp. 389–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Li, S. G. Zhou, M. P. Imreh, L. Ährlund-Richter, and W. R. Allen, “Horse embryonic stem cell lines from the proliferation of inner cell mass cells,” Stem Cells and Development, vol. 15, no. 4, pp. 523–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. T. Tecirlioglu and A. O. Trounson, “Embryonic stem cells in companion animals (horses, dogs and cats): present status and future prospects,” Reproduction, Fertility and Development, vol. 19, no. 6, pp. 740–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Lin, J. Lei, D. Wininger et al., “Multilineage potential of homozygous stem cells derived from metaphase II oocytes,” Stem Cells, vol. 21, no. 2, pp. 152–161, 2003. View at Google Scholar · View at Scopus
  15. I. Wilmut, N. Beaujean, P. A. De Sousa et al., “Somatic cell nuclear transfer,” Nature, vol. 419, no. 6907, pp. 583–586, 2002. View at Google Scholar · View at Scopus
  16. T. Wakayama, V. Tabar, I. Rodriguez, A. C. F. Perry, L. Studer, and P. Mombaerts, “Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer,” Science, vol. 292, no. 5517, pp. 740–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Liu, D. Balehosur, B. Murray, J. M. Kelly, H. Sumer, and P. J. Verma, “Generation and characterization of reprogrammed sheep induced pluripotent stem cells,” Theriogenology, vol. 77, no. 2, pp. 338–346.e1, 2012. View at Publisher · View at Google Scholar
  22. W. Li, W. Wei, S. Zhu et al., “Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors,” Cell Stem Cell, vol. 4, no. 1, pp. 16–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Liao, C. Cui, S. Chen et al., “Generation of induced pluripotent stem cell lines from adult rat cells,” Cell Stem Cell, vol. 4, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Esteban, J. Xu, J. Yang et al., “Generation of induced pluripotent stem cell lines from Tibetan miniature pig,” Journal of Biological Chemistry, vol. 284, no. 26, pp. 17634–17640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ezashi, B. P. V. L. Telugu, A. P. Alexenko, S. Sachdev, S. Sinha, and R. M. Roberts, “Derivation of induced pluripotent stem cells from pig somatic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 10993–10998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. F. D. West, S. L. Terlouw, D. J. Kwon et al., “Porcine induced pluripotent stem cells produce chimeric offspring,” Stem Cells and Development, vol. 19, no. 8, pp. 1211–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wu, J. Chen, J. Ren et al., “Generation of pig induced pluripotent stem cells with a drug-inducible system,” Journal of molecular cell biology, vol. 1, no. 1, pp. 46–54, 2009. View at Google Scholar · View at Scopus
  28. H. Sumer, J. Liu, L. F. Malaver-Ortega, M. L. Lim, K. Khodadadi, and P. J. Verma, “NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts,” Journal of Animal Science, vol. 89, no. 9, pp. 2708–2716, 2011. View at Publisher · View at Google Scholar
  29. K. Nagy, H. -K. Sung, P. Zhang et al., “Induced pluripotent stem cell lines derived from equine fibroblasts,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 693–702, 2011. View at Publisher · View at Google Scholar
  30. M. Pashaiasl, K. Khodadadi, M. K. Holland, and P. J. Verma, “The efficient generation of cell lines from bovine parthenotes,” Cellular Reprogramming, vol. 12, no. 5, pp. 571–579, 2010. View at Publisher · View at Google Scholar · View at Scopus