Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 439219, 10 pages
http://dx.doi.org/10.1155/2012/439219
Review Article

Prospective In Vitro Models of Channelopathies and Cardiomyopathies

Department of Pediatric Cardiology, Tokyo Women’s Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan

Received 17 December 2011; Revised 17 February 2012; Accepted 8 March 2012

Academic Editor: Kouichi Hasegawa

Copyright © 2012 Nanako Kawaguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ostadal, M. Nagano, and N. S. Dhalla, Eds., Genes and Cardiovascular Function, Springer, New York, NY, USA, 2011.
  2. M. A. Razzaque, T. Nishizawa, Y. Komoike et al., “Germline gain-of-function mutations in RAF1 cause Noonan syndrome,” Nature Genetics, vol. 39, no. 8, pp. 1013–1017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from human adult fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. I. H. Park, R. Zhao, J. A. West et al., “Reprogramming of human somatic cells to pluripotency with defined factors,” Nature, vol. 451, no. 7175, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Narsinh, K. H. Narsinh, and J. C. Wu, “Derivation of human induced pluripotent stem cells for cardiovascular disease modeling,” Circulation Research, vol. 108, no. 9, pp. 1146–1156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Kattman, C. H. Koonce, B. J. Swanson, and B. D. Anson, “Stem cells and their derivatives: a renaissance in cardiovascular translational research,” Journal of Cardiovascular Translational Research, vol. 4, no. 1, pp. 66–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Dambrot, R. Passier, D. Atsma, and C. L. Mummery, “Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models,” Biochemical Journal, vol. 434, no. 1, pp. 25–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. Kang, “Disease-specific pluripotent stem cells,” Korean Journal of Pediatrics, vol. 53, no. 8, pp. 786–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yoshida and S. Yamanaka, “IPS cells: a source of cardiac regeneration,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 2, pp. 327–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. J. Kamp and G. E. Lyons, “On the road to IPS cell cardiovascular applications,” Circulation Research, vol. 105, no. 7, pp. 617–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Qian and D. Srivastava, “Monkeying around with cardiac progenitors: hope for the future,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1034–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. Ellison, D. Torella, I. Karakikes, and B. Nadal-Ginard, “Myocyte death and renewal: modern concepts of cardiac cellular homeostasis,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 1, pp. S52–S59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Hosoda, “C-kit positive cardiac stem cells and myocardial regeneration,” American Journal of Cardiovascular Diseases, vol. 2, no. 1, pp. 58–67, 2012. View at Google Scholar
  15. S. Miyamoto, N. Kawaguchi, G. M. Ellison et al., “Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts,” Stem Cells and Development, vol. 19, no. 1, pp. 105–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Moretti, M. Bellin, A. Welling et al., “Patient-specific induced pluripotent stem-cell models for long-QT syndrome,” New England Journal of Medicine, vol. 363, no. 15, pp. 1397–1409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Itzhaki, L. Maizels, I. Huber et al., “Modelling the long QT syndrome with induced pluripotent stem cells,” Nature, vol. 471, no. 7337, pp. 225–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. J. Moss and R. S. Kass, “Long QT syndrome: from channels to cardiac arrhythmias,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2018–2024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Matsa, D. Rajamohan, E. Dick et al., “Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation,” European Heart Journal, vol. 32, no. 8, pp. 952–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Malan, S. Friedrichs, B. K. Fleischmann, and P. Sasse, “Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro,” Circulation Research, vol. 109, pp. 841–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Yazawa, B. Hsueh, X. Jia et al., “Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome,” Nature, vol. 471, no. 7337, pp. 230–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. B. Jung, A. Moretti, Y. Mederos et al., “Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 180–191, 2012. View at Google Scholar
  24. X. Carvajal-Vergara, A. Sevilla, S. L. D'souza et al., “Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome,” Nature, vol. 465, no. 7299, pp. 808–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Kim, V. Sebastiano, G. Wu et al., “Oct4-induced pluripotency in adult neural stem cells,” Cell, vol. 136, no. 3, pp. 411–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Efe, S. Hilcove, J. Kim et al., “Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy,” Nature Cell Biology, vol. 13, no. 3, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ieda, J. D. Fu, P. Delgado-Olguin et al., “Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors,” Cell, vol. 142, no. 3, pp. 375–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, “Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome,” Proceedings of the Japan Academy Series B, Physical and Biological Sciences, vol. 85, no. 8, pp. 348–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Ban, N. Nishihata, N. Fusaki et al., “Efficient generation of transgene-free human pluripotent stem cells (iPSCs) by temperature sensitive Sendai virus vectors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 34, pp. 14234–14239, 2011. View at Google Scholar
  30. E. Yakubov, G. Rechavi, S. Rozenblatt, and D. Givol, “Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors,” Biochemical and Biophysical Research Communications, vol. 394, no. 1, pp. 189–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Plews, J. Li, M. Jones et al., “Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach,” PLoS One, vol. 5, no. 12, Article ID e14397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Huangfu, R. Maehr, W. Guo et al., “Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds,” Nature Biotechnology, vol. 26, no. 7, pp. 795–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Huangfu, K. Osafune, R. Maehr et al., “Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2,” Nature Biotechnology, vol. 26, no. 11, pp. 1269–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Liang, O. Taranova, K. Xia, and Y. Zhang, “Butyrate promotes induced pluripotent stem cell generation,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25516–25521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Pasha, H. K. Haider, and M. Ashraf, “Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells,” PLoS One, vol. 6, no. 8, Article ID e23667, 2011. View at Google Scholar
  36. R. P. H. Ahmed, H. K. Haider, S. Buccini, L. Li et al., “Reprogramming of skeletal myoblasts for induction of pluripotency for tumor-free cardiomyogenesis in the infarcted heart,” Circulation Research, vol. 109, no. 1, pp. 60–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. T. S. Mikkelsen, M. Ku, D. B. Jaffe et al., “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Meissner, T. S. Mikkelsen, H. Gu et al., “Genome-scale DNA methylation maps of pluripotent and differentiated cells,” Nature, vol. 454, no. 7205, pp. 766–770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Collas, “Epigenetic states in stem cells,” Biochimica et Biophysica Acta, vol. 1790, no. 9, pp. 900–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Meissner, “Epigenetic modifications in pluripotent and differentiated cells,” Nature Biotechnology, vol. 28, no. 10, pp. 1079–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Lister, M. Pelizzola, Y. S. Kida et al., “Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 68–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Ackerman, S. G. Priori, S. Willems et al., “HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA),” Heart Rhythm, vol. 8, no. 8, pp. 1308–1339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. H. P. Huang, P. H. Chen, W. L. Hwu et al., “Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification,” Human Molecular Genetics, vol. 20, no. 24, pp. 4851–4864, 2011. View at Google Scholar
  44. L. Yang, M. H. Soonpaa, E. D. Adler et al., “Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population,” Nature, vol. 453, no. 7194, pp. 524–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Ren, M. Y. Lee, S. Schliffke et al., “Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 3, pp. 280–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Kattman, A. D. Witty, M. Gagliardi et al., “Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines,” Cell Stem Cell, vol. 8, no. 2, pp. 228–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. N. Tallini, K. S. Greene, M. Craven et al., “c-kit expression identifies cardiovascular precursors in the neonatal heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 1808–1813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Kawaguchi, “Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β superfamily,” Biomolecular Concepts, vol. 3, no. 1, pp. 99–106, 2012. View at Google Scholar
  49. C. Freund and C. L. Mummery, “Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 592–599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. J. K. Yamashita, “ES and iPS cell research for cardiovascular regeneration,” Experimental Cell Research, vol. 316, no. 16, pp. 2555–2559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Zhang, G. F. Wilson, A. G. Soerens et al., “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circulation Research, vol. 104, no. 4, pp. e30–e41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Xi, M. Khalil, N. Shishechian et al., “Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells,” FASEB Journal, vol. 24, no. 8, pp. 2739–2751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Bock, E. Kiskinis, G. Verstappen et al., “Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines,” Cell, vol. 144, no. 3, pp. 439–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. K. Gupta, D. J. Illich, A. Gaarz et al., “Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar,” BMC Developmental Biology, vol. 10, article no. 98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Yokoo, S. Baba, S. Kaichi et al., “The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells,” Biochemical and Biophysical Research Communications, vol. 387, no. 3, pp. 482–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Xu, B. A. Yi, H. Wu et al., “Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature,” Cell Research, vol. 22, no. 1, pp. 142–154, 2012. View at Google Scholar
  57. S. Kaichi, K. Hasegawa, T. Takaya et al., “Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice,” Cardiovascular Research, vol. 88, no. 2, pp. 314–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S. G. Priori, “Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time?” Circulation Research, vol. 109, pp. 822–824, 2011. View at Google Scholar
  59. J. Ma, L. Guo, S. J. Fiene et al., “High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents,” American Journal of Physiology and Heart Circulatory Physiology, vol. 301, no. 5, pp. H2006–H2017, 2011. View at Google Scholar
  60. P. W. Burridge, S. Thompson, M. A. Millrod et al., “A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability,” PLoS One, vol. 6, no. 4, Article ID e18293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Cao, Z. Liu, Z. Chen et al., “Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells,” Cell Research, vol. 22, no. 6, pp. 219–236, 2012. View at Google Scholar
  62. L. Li, S.M. Larabee, S. Chen et al., “Novel 5'TOP mRNAs regulated by ribosomal S6 kinase are important for cardiomyocyte development: S6 kinase suppression limits cardiac differentiation and promotes pluripotent cells towards a neural lineage,” Stem Cells and Development, vol. 21, no. 9, pp. 1538–1548, 2012. View at Google Scholar
  63. H. Kempf, M. Lecina, S. Ting et al., “Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells,” Stem Cell Research, vol. 7, no. 3, pp. 198–209, 2011. View at Google Scholar
  64. A. Sachinidis, S. Schwengberg, R. Hippler-Altenburg et al., “Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells,” Cellular Physiology and Biochemistry, vol. 18, no. 6, pp. 303–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Hao, M. A. Daleo, C. K. Murphy et al., “Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells,” PLoS One, vol. 3, no. 8, Article ID e2904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Wang, J. Hao, and C. C. Hong, “Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling,” ACS Chemical Biology, vol. 6, no. 2, pp. 192–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Fujiwara, P. Yan, T. G. Otsuji et al., “Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A,” PLoS One, vol. 6, no. 2, Article ID e16734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Quattrocelli, G. Palazzolo, I. Agnolin et al., “Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells,” Journal of Cellular Biochemistry, vol. 112, no. 8, pp. 2006–2014, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Shinozawa, H. Furukawa, E. Sato, and K. Takami, “A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation,” Journal of Biomolecular Screen, vol. 17, no. 5, pp. 683–691, 2012. View at Google Scholar
  70. F. Hattori, H. Chen, H. Yamashita et al., “Nongenetic method for purifying stem cell-derived cardiomyocytes,” Nature Methods, vol. 7, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Egashira, S. Yuasa, and K. Fukuda, “Induced pluripotent stem cells in cardiovascular medicine,” Stem Cells International, vol. 2011, Article ID 348960, 7 pages, 2011. View at Publisher · View at Google Scholar
  72. N. C. Dubois, A. M. Craft, P. Sharma et al., “SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 11, pp. 1011–1018, 2011. View at Google Scholar
  73. L.-T. Cheng, S. Nagata, K. Harano et al., “Cure of ADPKD by selection for spontaneous genetic repair events in Pkd1-mutated iPS cells,” PLos One, vol. 7, no. 2, Article ID e32018, 6 pages, 2012. View at Google Scholar
  74. T. J. Kipps and L. A. Herzenberg, “Homologous chromosome recombination generating immunoglobulin allotype and isotype switch variants.,” The EMBO Journal, vol. 5, no. 2, pp. 263–268, 1986. View at Google Scholar · View at Scopus
  75. M. K. Jonsson, Q. D. Wang, and B. Becker, “Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes,” Assay Drug Development Technologies, vol. 9, no. 6, pp. 589–599, 2011. View at Google Scholar
  76. C. F. Mandenius, D. Steel, F. Noor et al., “Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: A review,” Journal of Applied Toxicology, vol. 31, no. 3, pp. 191–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, “Micro and nano-scale in vitro 3D culture system for cardiac stem cells,” Journal of Biomedical Materials Research A, vol. 94, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Sekine, T. Shimizu, I. Dobashi et al., “Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection,” Tissue Engineering A, vol. 17, pp. 2973–2980, 2011. View at Google Scholar
  79. K. Matsuura, S. Masuda, Y. Haraguchi et al., “Creation of mouse embryonic stem cell-derived cardiac cell sheets,” Biomaterials, vol. 32, no. 30, pp. 7355–7362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Kawaguchi, “3D-culture system required for heart regeneration and cardiac medicine,” Submitted.
  81. N. Kawaguchi, R. Nakao, M. Yamaguchi, D. Ogawa, and R. Matsuoka, “TGF-β superfamily regulates a switch that mediates differentiation either into adipocytes or myocytes in left atrium derived pluripotent cells (LA-PCS),” Biochemical and Biophysical Research Communications, vol. 396, no. 3, pp. 619–625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Kawaguchi, “Adult cardiac-derived stem cells: differentiation regulators and survival regulators,” Vitamins and Hormones, vol. 87, pp. 111–125, 2011. View at Google Scholar
  83. M. Machida, Y. Takagaki, R. Matsuoka, and N. Kawaguchi, “Proteomic comparison of spherical aggregates and adherent cells of cardiac stem cells,” International Journal of Cardiology, vol. 153, pp. 296–305, 2011. View at Google Scholar
  84. R. C. Kukreja, C. Yin, and F. N. Salloum, “MicroRNAs: new players in cardiac injury and protection,” Molecular Pharmacology, vol. 80, no. 4, pp. 558–564, 2011. View at Google Scholar
  85. J. Xu, J. Zhao, G. Evan et al., “Circulating microRNAs: novel biomarkers for cardiovascular diseases,” Journal of Molecular Medicine, vol. 90, no. 8, pp. 865–875, 2012. View at Google Scholar
  86. J. Wang, S. B. Greene, M. Bonilla-Claudio et al., “Bmp signaling regulates myocardial differentiation from cardiac progenitors through a micro-RNA-mediated mechanism,” Developmental Cell, vol. 19, no. 6, pp. 903–912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. K. N. Ivey and D. Srivastava, “MicroRNAs as regulators of differentiation and cell fate decisions.,” Cell stem cell, vol. 7, no. 1, pp. 36–41, 2010. View at Google Scholar · View at Scopus
  88. P. Jakob and U. Landmesser, “Role of microRNAs in stem/progenitor cells and cardiovascular repair,” Cardiovascular Research, vol. 93, no. 4, pp. 614–622, 2012. View at Google Scholar
  89. J. E. Babiarz, M. Ravon, S. Sridhar et al., “Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling,” Stem Cells and Development, vol. 21, no. 11, pp. 1956–1965, 2012. View at Google Scholar
  90. A. Meissner, “Epigenetic modifications in pluripotent and differentiated cells,” Nature Biotechnology, vol. 28, no. 10, pp. 1079–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus