Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 454295, 8 pages
http://dx.doi.org/10.1155/2012/454295
Research Article

Subretinal Implantation of Electrospun, Short Nanowire, and Smooth Poly( -caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes

1Department of Ophthalmology, Glostrup Hospital, Copenhagen University Hospital, 2600 Glostrup, Denmark
2Advanced Development Center, CooperVision, Inc., Pleasanton, CA 94588, USA
3NuVention Solutions Inc., Valley View, OH 44125, USA
4Case Western Reserve University, Cleveland, OH 44106, USA
5Eye Pathology Institute, University of Copenhagen, 2100 Copenhagen, Denmark
6Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
7The Gavin Herbert Eye Institute and Stem Cell Research Center, University of California, Irvine, CA 92697, USA
8Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40208, USA

Received 14 September 2011; Accepted 4 January 2012

Academic Editor: Chee Gee Liew

Copyright © 2012 A. T. Christiansen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Klassen and B. Reubinoff, “Stem cells in a new light,” Nature Biotechnology, vol. 26, no. 2, pp. 187–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Lamba, M. Karl, and T. Reh, “Neural regeneration and cell replacement: a view from the eye,” Cell Stem Cell, vol. 2, no. 6, pp. 538–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Tomita, E. Lavik, H. Klassen, T. Zahir, R. Langer, and M. J. Young, “Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells,” Stem Cells, vol. 23, no. 10, pp. 1579–1588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. B. Lavik, H. Klassen, K. Warfvinge, R. Langer, and M. J. Young, “Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors,” Biomaterials, vol. 26, no. 16, pp. 3187–3196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Warfvinge, J. F. Kiilgaard, E. B. Lavik et al., “Retinal progenitor cell xenografts to the pig retina: morphologic integration and cytochemical differentiation,” Archives of Ophthalmology, vol. 123, no. 10, pp. 1385–1393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. Tucker, S. M. Redenti, C. Jiang et al., “The use of progenitor cell/biodegradable MMP2-PLGA polymer constructs to enhance cellular integration and retinal repopulation,” Biomaterials, vol. 31, no. 1, pp. 9–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Yao, B. A. Tucker, X. Zhang, P. Checa-Casalengua, R. Herrero-Vanrell, and M. J. Young, “Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells,” Biomaterials, vol. 32, no. 4, pp. 1041–1050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Silva-Cunha, S. L. Fialho, M. C. Naud, and F. Behar-Cohen, “Poly-ε-caprolactone intravitreous devices: an in vivo study,” Investigative Ophthalmology and Visual Science, vol. 50, no. 5, pp. 2312–2318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Cai, M. E. Smith, S. M. Redenti, G. E. Wnek, and M. J. Young, “Mouse retinal progenitor cell dynamics on electrospun poly(ε-caprolactone),” Journal of Biomaterials Science, Polymer Edition. In press.
  10. S. Sodha, K. Wall, S. Redenti, H. Klassen, M. J. Young, and S. L. Tao, “Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation,” Journal of Biomaterials Science, Polymer Edition, vol. 22, no. 4–6, pp. 443–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, X. Fan, J. Xia et al., “Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering,” International journal of nanomedicine, vol. 6, pp. 453–461, 2011. View at Google Scholar
  12. S. L. Tao and T. A. Desai, “Aligned arrays of biodegradable poly(ε-caprolactone) nanowires and nanofibers by template synthesis,” Nano Letters, vol. 7, no. 6, pp. 1463–1468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Redenti, S. Tao, J. Yang et al., “Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(ε-caprolactone) nanowire scaffold,” Journal of Ocular Biology, Diseases, and Informatics, vol. 1, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Voss Kyhn, J. F. Kiilgaard, A. G. Lopez, E. Scherfig, J. U. Prause, and M. la Cour, “Functional implications of short-term retinal detachment in porcine eyes: study by multifocal electroretinography,” Acta Ophthalmologica Scandinavica, vol. 86, no. 1, pp. 18–25, 2008. View at Google Scholar · View at Scopus
  15. M. Voss Kyhn, J. F. Kiilgaard, A. G. Lopez, E. Scherfig, J. U. Prause, and M. la Cour, “The multifocal electroretinogram (mfERG) in the pig,” Acta Ophthalmologica Scandinavica, vol. 85, no. 4, pp. 438–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Ejstrup, E. Scherfig, and M. la Cour, “Electrophysiological consequences of experimental branch retinal vein occlusion in pigs and the effect of dorzolamide,” Investigative Ophthalmology and Visual Science, vol. 52, no. 2, pp. 952–958, 2011. View at Publisher · View at Google Scholar
  17. A. T. Christiansen, J. F. Kiilgaard, M. Smith et al., “The influence of brightness on functional assessment by mfERG: a study on scaffolds used in retinal cell transplantation in pigs,” Stem Cells International, vol. 2012, Article ID 263264, 7 pages, 2012. View at Publisher · View at Google Scholar
  18. L. D. Hubbard, R. P. Danis, M. W. Neider et al., “Brightness, contrast, and color balance of digital versus film retinal images in the age-related eye disease study 2,” Investigative Ophthalmology and Visual Science, vol. 49, no. 8, pp. 3269–3282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. R. Hynes and E. B. Lavik, “A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 6, pp. 763–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Sheridan, R. Williams, and I. Grierson, “Basement membranes and artificial substrates in cell transplantation,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 1, pp. 68–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Lu, M. J. Yaszemski, and A. G. Mikos, “Retinal pigment epithelium engineering using synthetic biodegradable polymers,” Biomaterials, vol. 22, no. 24, pp. 3345–3355, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. R. Grayson, G. Voskerician, A. Lynn, J. M. Anderson, M. J. Cima, and R. Langer, “Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for polymeric drug-delivery microchip,” Journal of Biomaterials Science, Polymer Edition, vol. 15, no. 10, pp. 1281–1304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Kiilgaard, M. V. N. Andersen, A. K. Wiencke et al., “A new animal model of choroidal neovascularization,” Acta Ophthalmologica Scandinavica, vol. 83, no. 6, pp. 697–704, 2005. View at Publisher · View at Google Scholar · View at Scopus