Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 579104, 11 pages
http://dx.doi.org/10.1155/2012/579104
Review Article

Human Embryonic Stem Cell Responses to Ionizing Radiation Exposures: Current State of Knowledge and Future Challenges

Nuclear Medicine Division, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, bldg 10, room 4D49, Bethesda, MD 20892, USA

Received 22 May 2012; Accepted 22 July 2012

Academic Editor: Frank Pajonk

Copyright © 2012 Mykyta V. Sokolov and Ronald D. Neumann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  2. M. J. Shamblott, J. Axelman, S. Wang et al., “Derivation of pluripotent stem cells from cultured human primordial germ cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13726–13731, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. B. K. Iu, “Main principles of radiobiology,” Radiatsionnaia Biologiia, Radioecologiia, vol. 41, pp. 531–547, 2001. View at Google Scholar
  4. I. Turesson, J. Carlsson, A. Brahme et al., “Biological response to radiation therapy,” Acta Oncologica, vol. 42, no. 2, pp. 92–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Preston, “Radiation biology: concepts for radiation protection,” Health Physics, vol. 88, no. 6, pp. 545–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. De Santis, E. Cesari, E. Nobili, G. Straface, A. F. Cavaliere, and A. Caruso, “Radiation effects on development,” Birth Defects Research Part C, vol. 81, no. 3, pp. 177–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. McCollough, B. A. Schueler, T. D. Atwell et al., “Radiation exposure and pregnancy: when should we be concerned?” Radiographics, vol. 27, no. 4, pp. 909–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Fazel, H. M. Krumholz, Y. Wang et al., “Exposure to low-dose ionizing radiation from medical imaging procedures,” The New England Journal of Medicine, vol. 361, no. 9, pp. 849–857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Smith-Bindman, J. Lipson, R. Marcus et al., “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2078–2086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Daza, H. Schübler, T. J. McMillan, S. C. Girod, and P. Pfeiffer, “Radiosensitivity and double-strand break rejoining in tumorigenic and non-tumorigenic human epithelial cell lines,” International Journal of Radiation Biology, vol. 72, no. 1, pp. 91–100, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Rothkamm and M. Löbrich, “Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5057–5062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. V. Sokolov, R. D. Neumann, and I. G. Panyutin, “Effects of DNA-targeted ionizing radiation produced by 5-[I125]iodo-2-deoxyuridine on global gene expression in primary human cells,” BMC Genomics, vol. 8, p. 192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. V. Sokolov, N. A. Smirnova, R. D. Camerini-Otero, R. D. Neumann, and I. G. Panyutin, “Microarray analysis of differentially expressed genes after exposure of normal human fibroblasts to ionizing radiation from an external source and from DNA-incorporated iodine-125 radionuclide,” Gene, vol. 382, pp. 47–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Cabuy, C. Newton, G. Joksic et al., “Accelerated telomere shortening and telomere abnormalities in radiosensitive cell lines,” Radiation Research, vol. 164, no. 1, pp. 53–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. U. M. Becher, M. Breitbach, P. Sasse et al., “Enrichment and terminal differentiation of striated muscle progenitors in vitro,” Experimental Cell Research, vol. 315, no. 16, pp. 2741–2751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. D. Wilson, N. Sun, M. Huang et al., “Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells,” Cancer Research, vol. 70, no. 13, pp. 5539–5548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Momčilović, S. Choi, S. Varum, C. Bakkenist, G. Schatten, and C. Navara, “Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G2 but not G1 cell cycle arrest in pluripotent human embryonic stem cells,” Stem Cells, vol. 27, no. 8, pp. 1822–1835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. M. Filion, M. Qiao, P. N. Ghule et al., “Survival responses of human embryonic stem cells to DNA damage,” Journal of Cellular Physiology, vol. 220, no. 3, pp. 586–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. V. Sokolov, I. V. Panyutin, M. I. Onyshchenko, I. G. Panyutin, and R. D. Neumann, “Expression of pluripotency-associated genes in the surviving fraction of cultured human embryonic stem cells is not significantly affected by ionizing radiation,” Gene, vol. 455, no. 1-2, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Qin, T. Yu, T. Qing et al., “Regulation of apoptosis and differentiation by p53 in human embryonic stem cells,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5842–5852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Dumitru, V. Gama, B. M. Fagan et al., “Human embryonic stem cells have constitutively active bax at the golgi and are primed to undergo rapid apoptosis,” Molecular Cell, vol. 46, no. 5, pp. 573–583, 2012. View at Publisher · View at Google Scholar
  22. K. A. Becker, P. N. Ghule, J. A. Therrien et al., “Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase,” Journal of Cellular Physiology, vol. 209, no. 3, pp. 883–893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Becker, J. L. Stein, J. B. Lian, A. J. van Wijnen, and G. S. Stein, “Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells,” Journal of Cellular Physiology, vol. 210, no. 2, pp. 517–526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. N. Ghule, K. A. Becker, J. W. Harper et al., “Cell cycle dependent phosphorylation and subnuclear organization of the histone gene regulator p220NPAT in human embryonic stem cells,” Journal of Cellular Physiology, vol. 213, no. 1, pp. 9–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. N. Ghule, Z. Dominski, X. C. Yang et al., “Staged assembly of histone gene expression machinery at subnuclear foci in the abbreviated cell cycle of human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 44, pp. 16964–16969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Becker, P. N. Ghule, J. B. Lian, J. L. Stein, A. J. van Wijnen, and G. S. Stein, “Cyclin D2 and the CDK substrate p220NPAT are required for self-renewal of human embryonic stem cells,” Journal of Cellular Physiology, vol. 222, no. 2, pp. 456–464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Kapinas, R. Grandy, P. Ghule et al., “The abbreviated pluripotent cell cycle,” Journal of Cellular Physiology. In press. View at Publisher · View at Google Scholar
  28. G. S. Stein, J. L. Stein, J. W. A. van et al., “The architectural organization of human stem cell cycle regulatory machinery,” Current Pharmaceutical Design, vol. 18, pp. 1679–1685, 2012. View at Google Scholar
  29. O. Momčilović, C. Navara, and G. Schatten, “Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells,” Results and Problems in Cell Differentiation, vol. 53, pp. 415–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. A. Becker, J. L. Stein, J. B. Lian, A. J. Van Wijnen, and G. S. Stein, “Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming,” Journal of Cellular Physiology, vol. 222, no. 1, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Burma, B. P. Chen, M. Murphy, A. Kurimasa, and D. J. Chen, “ATM Phosphorylates Histone H2AX in Response to DNA Double-strand Breaks,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 42462–42467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. R. Adams, S. E. Golding, R. R. Rao, and K. Valerie, “Dynamic dependence on ATR and ATM for double-Strand break repair in human embryonic stem cells and neural descendants,” PLoS ONE, vol. 5, no. 4, Article ID e10001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. V. Sokolov, I. V. Panyutin, I. G. Panyutin, and R. D. Neumann, “Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure,” Mutation Research, vol. 709-710, pp. 40–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Mantel, Y. Guo, M. R. Lee et al., “Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability,” Blood, vol. 109, no. 10, pp. 4518–4527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Bárta, V. Vinarský, Z. Holubcová et al., “Human embryonic stem cells are capable of executing G1/S checkpoint activation,” Stem Cells, vol. 28, no. 7, pp. 1143–1152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Neganova, F. Vilella, S. P. Atkinson et al., “An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells,” Stem Cells, vol. 29, no. 4, pp. 651–659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Maimets, I. Neganova, L. Armstrong, and M. Lako, “Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells,” Oncogene, vol. 27, no. 40, pp. 5277–5287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Svilar, E. M. Goellner, K. H. Almeida, and R. W. Sobol, “Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage,” Antioxidants and Redox Signaling, vol. 14, no. 12, pp. 2491–2507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Wilson III, D. Kim, B. R. Berquist, and A. J. Sigurdson, “Variation in base excision repair capacity,” Mutation Research, vol. 711, no. 1-2, pp. 100–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Vermeulen, “Dynamics of mammalian NER proteins,” DNA Repair, vol. 10, no. 7, pp. 760–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Liu, J. Lee, and P. Zhou, “Navigating the nucleotide excision repair threshold,” Journal of Cellular Physiology, vol. 224, no. 3, pp. 585–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Jiricny, “The multifaceted mismatch-repair system,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 335–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. E. M. Kass and M. Jasin, “Collaboration and competition between DNA double-strand break repair pathways,” FEBS Letters, vol. 584, no. 17, pp. 3703–3708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. T. Holthausen, C. Wyman, and R. Kanaar, “Regulation of DNA strand exchange in homologous recombination,” DNA Repair, vol. 9, no. 12, pp. 1264–1272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Mladenov and G. Iliakis, “Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways,” Mutation Research, vol. 711, no. 1-2, pp. 61–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. R. Lieber, “The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway,” Annual Review of Biochemistry, vol. 79, pp. 181–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. E. Moynahan and M. Jasin, “Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis,” Nature Reviews Molecular Cell Biology, vol. 11, no. 3, pp. 196–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Diderich, M. Alanazi, and J. H. J. Hoeijmakers, “Premature aging and cancer in nucleotide excision repair-disorders,” DNA Repair, vol. 10, no. 7, pp. 772–780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Maynard, A. M. Swistowska, W. L. Jae et al., “Human embryonic stem cells have enhanced repair of multiple forms of DNA damage,” Stem Cells, vol. 26, no. 9, pp. 2266–2274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. B. R. Adams, A. J. Hawkins, L. F. Povirk, and K. Valerie, “ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells,” Aging, vol. 2, no. 9, pp. 582–596, 2010. View at Google Scholar · View at Scopus
  51. H. Fung and D. M. Weinstock, “Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells,” PLoS ONE, vol. 6, no. 5, Article ID e20514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Z. Luo, S. Gopalakrishna-Pillai, S. L. Nay et al., “DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells,” PLoS ONE, vol. 7, Article ID e30541, 2012. View at Google Scholar
  53. K. E. Rieger and G. Chu, “Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells,” Nucleic Acids Research, vol. 32, no. 16, pp. 4786–4803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Sokolov, I. G. Panyutin, and R. Neumann, “Genome-wide gene expression changes in normal human fibroblasts in response to low-LET gamma-radiation and high-LET-like 125IUdR exposures,” Radiation Protection Dosimetry, vol. 122, no. 1–4, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. A. Amundson, K. T. Do, and A. J. Fornace Jr., “Induction of stress genes by low doses of gamma rays,” Radiation Research, vol. 152, no. 3, pp. 225–231, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Besson, S. F. Dowdy, and J. M. Roberts, “CDK inhibitors: cell cycle regulators and beyond,” Developmental Cell, vol. 14, no. 2, pp. 159–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. O. K. Rødningen, J. Overgaard, J. Alsner, T. Hastie, and A. L. Børresen-Dale, “Microarray analysis of the transcriptional responseto single or multiple doses of ionizing radiation in human subcutaneous fibroblasts,” Radiotherapy and Oncology, vol. 77, no. 3, pp. 231–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Calvanese and M. F. Fraga, “Epigenetics of embryonic stem cells,” Advances in Experimental Medicine and Biology, vol. 741, pp. 231–253, 2012. View at Google Scholar
  59. A. Mattout and E. Meshorer, “Chromatin plasticity and genome organization in pluripotent embryonic stem cells,” Current Opinion in Cell Biology, vol. 22, no. 3, pp. 334–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Meissner, “Epigenetic modifications in pluripotent and differentiated cells,” Nature Biotechnology, vol. 28, no. 10, pp. 1079–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Bibikova, E. Chudin, B. Wu et al., “Human embryonic stem cells have a unique epigenetic signature,” Genome Research, vol. 16, no. 9, pp. 1075–1083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Altun, J. F. Loring, and L. C. Laurent, “DNA methylation in embryonic stem cells,” Journal of Cellular Biochemistry, vol. 109, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Bock, E. Kiskinis, G. Verstappen et al., “Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines,” Cell, vol. 144, no. 3, pp. 439–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Y. Chen, S. Feng, J. W. Joo, S. E. Jacobsen, and M. Pellegrini, “A comparative analysis of DNA methylation across human embryonic stem cell lines,” Genome Biology, vol. 12, article R62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. L. C. Laurent, J. Chen, I. Ulitsky et al., “Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence,” Stem Cells, vol. 26, no. 6, pp. 1506–1516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Aranda, X. Agirre, E. Ballestar et al., “Epigenetic signatures associated with different levels of differentiation potential in human stem cells,” PLoS ONE, vol. 4, no. 11, Article ID e7809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Dasa, M. Marek, B. Tomas et al., “MicroRNAs regulate p21(Waf1/cip1) protein expression and the DNA damage response in human embryonic stem cells,” Stem Cells, vol. 30, no. 7, pp. 1362–1372, 2012. View at Publisher · View at Google Scholar
  68. J. Qi, J. Y. Yu, H. R. Shcherbata et al., “microRNAs regulate human embryonic stem cell division,” Cell Cycle, vol. 8, no. 22, pp. 3729–3741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. V. Sokolov, I. V. Panyutin, and R. D. Neumann, “Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells,” PLoS ONE, vol. 7, Article ID e31028, 2012. View at Google Scholar
  70. M. M. Elkind and G. F. Whitmore, The Radiobiology of Cultured Mammalian Cells, Gordon and Breach, American Institute of Biological Sciences, New York, NY, USA, 1967.
  71. H. Nagasawa and J. B. Little, “Induction of sister chromatid exchanges by extremely low doses of alpha-particles,” Cancer Research, vol. 52, pp. 6394–6396, 1992. View at Google Scholar
  72. M. V. Sokolov, L. B. Smilenov, E. J. Hall, I. G. Panyutin, W. M. Bonner, and O. A. Sedelnikova, “Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts,” Oncogene, vol. 24, no. 49, pp. 7257–7265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. V. Sokolov, J. S. Dickey, W. M. Bonner, and O. A. Sedelnikova, “γ-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication,” Cell Cycle, vol. 6, no. 18, pp. 2210–2212, 2007. View at Google Scholar · View at Scopus
  74. J. S. Dickey, B. J. Baird, C. E. Redon, M. V. Sokolov, O. A. Sedelnikova, and W. M. Bonner, “Intercellular communication of cellular stress monitored by γ-H2AX induction,” Carcinogenesis, vol. 30, no. 10, pp. 1686–1695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Mothersill and C. Seymour, “Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells,” International Journal of Radiation Biology, vol. 71, no. 4, pp. 421–427, 1997. View at Google Scholar · View at Scopus
  76. N. Hamada, H. Matsumoto, T. Hara, and Y. Kobayashi, “Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects,” Journal of Radiation Research, vol. 48, no. 2, pp. 87–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. M. V. Sokolov and R. D. Neumann, “Radiation-induced bystander effects in cultured human stem cells,” PLoS ONE, vol. 5, no. 12, Article ID e14195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Adewumi, B. Aflatoonian, L. Ahrlund-Richter et al., “Characterization of human embryonic stem cell lines by the International Stem Cell Initiative,” Nature Biotechnology, vol. 25, no. 7, pp. 803–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Allegrucci and L. E. Young, “Differences between human embryonic stem cell lines,” Human Reproduction Update, vol. 13, no. 2, pp. 103–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Närvä, R. Autio, N. Rahkonen et al., “High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity,” Nature Biotechnology, vol. 28, no. 4, pp. 371–377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. T. E. Werbowetski-Ogilvie, M. Bossé, M. Stewart et al., “Characterization of human embryonic stem cells with features of neoplastic progression,” Nature Biotechnology, vol. 27, no. 1, pp. 91–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Spits, I. Mateizel, M. Geens et al., “Recurrent chromosomal abnormalities in human embryonic stem cells,” Nature Biotechnology, vol. 26, no. 12, pp. 1361–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Wu, K. J. Kim, K. Mehta et al., “Copy number variant analysis of human embryonic stem cells,” Stem Cells, vol. 26, no. 6, pp. 1484–1489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Amps, P. W. Andrews, G. Anyfantis et al., “Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage,” Nature Biotechnology, vol. 29, pp. 1132–1144, 2011. View at Google Scholar
  85. D. E. C. Baker, N. J. Harrison, E. Maltby et al., “Adaptation to culture of human embryonic stem cells and oncogenesis in vivo,” Nature Biotechnology, vol. 25, no. 2, pp. 207–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. F. W. King, C. Ritner, W. Liszewski et al., “Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures,” Stem Cells and Development, vol. 18, no. 10, pp. 1441–1450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Fertil and E. P. Malaise, “Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 7, no. 5, pp. 621–629, 1981. View at Google Scholar · View at Scopus
  88. J. R. Williams, Y. Zhang, H. Zhou et al., “Overview of radiosensitivity of human tumor cells to low-dose-rate irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 3, pp. 909–917, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Watanabe, M. Ueno, D. Kamiya et al., “A ROCK inhibitor permits survival of dissociated human embryonic stem cells,” Nature Biotechnology, vol. 25, no. 6, pp. 681–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. I. Barbaric, M. Jones, K. Buchner, D. Baker, P. W. Andrews, and H. D. Moore, “Pinacidil enhances survival of cryopreserved human embryonic stem cells,” Cryobiology, vol. 63, pp. 298–305, 2011. View at Publisher · View at Google Scholar
  91. M. Ohgushi, M. Matsumura, M. Eiraku et al., “Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 2, pp. 225–239, 2010. View at Publisher · View at Google Scholar · View at Scopus