Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 675805, 10 pages
http://dx.doi.org/10.1155/2012/675805
Research Article

Characterization of Progenitor Cells during Canine Retinal Development

1Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, DF 04510, Mexico
2School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA

Received 29 September 2011; Revised 28 November 2011; Accepted 28 November 2011

Academic Editor: Henry J. Klassen

Copyright © 2012 Mallely Ávila-García et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Ahmad, “Stem cells: new opportunities to treat eye diseases,” Investigative Ophthalmology and Visual Science, vol. 42, no. 12, pp. 2743–2748, 2001. View at Google Scholar · View at Scopus
  2. I. Klimanskaya, “Retinal pigment epithelium derived from embryonic stem cells,” in Stem Cell Anthology: Stem Cell Biology, Tissue, Engineering, Cloning, Regenerative Medicine and Biology, B. C. Carlson, Ed., pp. 335–346, Elsevier, San Diego, Calif, USA, 1st edition, 2010. View at Google Scholar
  3. V. Tropepe, B. L. K. Coles, B. J. Chiasson et al., “Retinal stem cells in the adult mammalian eye,” Science, vol. 287, no. 5460, pp. 2032–2036, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. L. K. Coles, B. Angénieux, T. Inoue et al., “Facile isolation and the characterization of human retinal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15772–15777, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. A. Cicero, D. Johnson, S. Reyntjens et al., “Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6685–6690, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. J. Seiler, R. B. Aramant, M. W. Seeliger, R. Bragadottir, M. Mahoney, and K. Narfstrom, “Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration,” Veterinary Ophthalmology, vol. 12, no. 3, pp. 158–169, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. E. A. McCulloch and J. E. Till, “Perspectives on the properties of stem cells,” Nature Medicine, vol. 11, no. 10, pp. 1026–1028, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. L. Li and T. Xie, “Stem cell niche: structure and function,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 605–631, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. J. Fischer and T. A. Reh, “Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens,” Developmental Biology, vol. 220, no. 2, pp. 197–210, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. Xu, I. D. D. Sta, J. L. Kielczewski et al., “Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes,” Investigative Ophthalmology and Visual Science, vol. 48, no. 4, pp. 1674–1682, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. A. Reh and E. M. Levine, “Multipotential stem cells and progenitors in the vertebrate retina,” Journal of Neurobiology, vol. 36, no. 2, pp. 206–220, 1998. View at Google Scholar
  13. A. J. Fischer, B. D. Dierks, and T. A. Reh, “Exogenous growth factors induce the production of ganglion cells at the retinal margin,” Development, vol. 129, no. 9, pp. 2283–2291, 2002. View at Google Scholar · View at Scopus
  14. A. J. Fischer, J. J. Stanke, K. Ghai, M. Scott, and G. Omar, “Development of bullwhip neurons in the embryonic chicken retina,” Journal of Comparative Neurology, vol. 503, no. 4, pp. 539–549, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. X. Mu and W. H. Klein, “A gene regulatory hierarchy for retinal ganglion cell specification and differentiation,” Seminars in Cell and Developmental Biology, vol. 15, no. 1, pp. 115–123, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. Marquardt and P. Gruss, “Generating neuronal diversity in the retina: one for nearly all,” Trends in Neurosciences, vol. 25, no. 1, pp. 32–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. N. A. Zaghloul, B. Yan, and S. A. Moody, “Step-wise specification of retinal stem cells during normal embryogenesis,” Biology of the Cell, vol. 97, no. 5, pp. 321–337, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. A. Raymond, L. K. Barthel, R. L. Bernardos, and J. J. Perkowski, “Molecular characterization of retinal stem cells and their niches in adult zebrafish,” BMC Developmental Biology, vol. 26, pp. 1–17, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. E. Zuber, G. Gestri, A. S. Viczian, G. Barsacchi, and W. A. Harris, “Specification of the vertebrate eye by a network of eye field transcription factors,” Development, vol. 130, no. 21, pp. 5155–5167, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. Walther and P. Gruss, “Pax-6, a murine paired box gene, is expressed in the developing CNS,” Development, vol. 113, no. 4, pp. 1435–1449, 1991. View at Google Scholar · View at Scopus
  21. R. L. Chow, C. R. Altmann, R. A. Lang, and A. Hemmati-Brivanlou, “Pax6 induces ectopic eyes in a vertebrate,” Development, vol. 126, no. 19, pp. 4213–4222, 1999. View at Google Scholar · View at Scopus
  22. G. Halder, P. Callaerts, and W. J. Gehring, “New perspectives on eye evolution,” Current Opinion in Genetics and Development, vol. 5, no. 5, pp. 602–609, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Grindley, D. R. Davidson, and R. E. Hill, “The role of Pax-6 in eye and nasal development,” Development, vol. 121, no. 5, pp. 1433–1442, 1995. View at Google Scholar · View at Scopus
  24. T. Strachan and A. P. Read, “PAX genes,” Current Opinion in Genetics and Development, vol. 4, no. 3, pp. 427–438, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Quinn, J. D. West, and R. E. Hill, “Multiple functions for Pax6 in mouse eye and nasal development,” Genes and Development, vol. 10, no. 4, pp. 435–446, 1996. View at Google Scholar · View at Scopus
  26. R. Ashery-Padan, T. Marquardt, X. Zhou, and P. Gruss, “Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye,” Genes and Development, vol. 14, no. 21, pp. 2701–2711, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Marquardt, R. Ashery-Padan, N. Andrejewski, R. Scardigli, F. Guillemot, and P. Gruss, “Pax6 is required for the multipotent state of retinal progenitor cells,” Cell, vol. 105, no. 1, pp. 43–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Hever, K. A. Williamson, and V. van Heyningen, “Developmental malformations of the eye: The role of PAX6, SOX2 and OTX2,” Clinical Genetics, vol. 69, no. 6, pp. 459–470, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Osumi, H. Shinohara, K. Numayama-Tsuruta, and M. Maekawa, “Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator,” Stem Cells, vol. 26, no. 7, pp. 1663–1672, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. T. Doh, H. Hao, S. C. Loh et al., “Analysis of retinal cell development in chick embryo by immunohistochemistry and in ovo electroporation techniques,” BMC Developmental Biology, vol. 10, article 8, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. J. Dahlstrand, M. Lardelli, and U. Lendahl, “Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system,” Developmental Brain Research, vol. 84, no. 1, pp. 109–129, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Fukuda, F. Kato, Y. Tozuka, M. Yamaguchi, Y. Miyamoto, and T. Hisatsune, “Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus,” Journal of Neuroscience, vol. 23, no. 28, pp. 9357–9366, 2003. View at Google Scholar · View at Scopus
  33. J. C. Walcott and J. M. Provis, “Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina,” Clinical and Experimental Ophthalmology, vol. 31, no. 3, pp. 246–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. J. Mayer, D. A. Carter, Y. Ren et al., “Neural progenitor cells from postmortem adult human retina,” British Journal of Ophthalmology, vol. 89, no. 1, pp. 102–106, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. H. Kohno, T. Sakai, and K. Kitahara, “Induction of nestin, Ki-67, and cyclin D1 expression in Müller cells after laser injury in adult rat retina,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 1, pp. 90–95, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. Jagatha, M. S. Divya, R. Sanalkumar et al., “In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors,” Biochemical and Biophysical Research Communications, vol. 380, no. 2, pp. 230–235, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. E. Caminos, E. Becker, D. Martin-Zanca, and E. Vecino, “Neurotrophins and their receptors in the normal and regenerating tench retina. An in situ hybridisation and immunoreactivity study,” Journal of Comparitive Neurology, vol. 404, no. 3, pp. 321–331, 1999. View at Google Scholar
  38. A. J. Weber and C. D. Harman, “BDNF preserves the dendritic morphology of α and β ganglion cells in the cat retina after optic nerve injury,” Investigative Ophthalmology and Visual Science, vol. 49, no. 6, pp. 2456–2463, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Germanà, C. Sánchez-Ramos, M. C. Guerrera et al., “Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development,” Journal of Anatomy, vol. 217, no. 3, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. J. Karnovsky, “A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy,” Journal of Cell Biology, vol. 27, no. 137, 1965. View at Google Scholar
  41. G. D. Aguirre, L. F. Rubin, and S. I. Bistner, “Development of the canine eye,” American Journal of Veterinary Research, vol. 33, no. 12, pp. 2399–2414, 1972. View at Google Scholar · View at Scopus
  42. P. Simoens and K. D. Budras, “The eye,” in Anatomy of the Dog, K.-D. Budras, P. H. McCarthy, W. Fricke, and R. Richter, Eds., pp. 118–119, Schlütersche, Frankfurt, Germany, 5th edition, 2007. View at Google Scholar
  43. C. S. Cook, “Embryogenesis of congenital eye malformations,” Veterinary and Comparative Ophthalmology, vol. 5, no. 2, pp. 109–1211, 1995. View at Google Scholar
  44. C. S. Cook, “Ocular embryology and congenital malformations,” in Veterinary Ophthalmology, K. N. Gelatt, Ed., pp. 3–30, Blackwell, Ames, Iowa, USA, 4th edition, 2007. View at Google Scholar
  45. J. W. Hinds and P. L. Hinds, “Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections,” Developmental Biology, vol. 37, no. 2, pp. 381–416, 1974. View at Google Scholar · View at Scopus
  46. L. M. Baye and B. A. Link, “Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis,” Journal of Neuroscience, vol. 27, no. 38, pp. 10143–10152, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. L. M. Baye and B. A. Link, “Nuclear migration during retinal development,” Brain Research, vol. 1192, no. C, pp. 29–36, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. W. Spira and M. J. Hollenberg, “Human retinal development: ultrastructure of the inner retinal layers,” Developmental Biology, vol. 31, no. 1, pp. 1–21, 1973. View at Google Scholar · View at Scopus
  49. K. Michalczyk and M. Ziman, “Nestin structure and predicted function in cellular cytoskeletal organisation,” Histology and Histopathology, vol. 20, no. 2, pp. 665–671, 2005. View at Google Scholar · View at Scopus
  50. K. Ghai, J. J. Stanke, and A. J. Fischer, “Patterning of the circumferential marginal zone of progenitors in the chicken retina,” Brain Research, vol. 1192, pp. 76–89, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. T. Hirata, E. Morii, M. Morimoto et al., “Stem cell factor induces outgrowth of c-kit-positive neurites and supports the survival of c-kit-positive neurons in dorsal root ganglia of mouse embryos,” Development, vol. 119, no. 1, pp. 49–56, 1993. View at Google Scholar · View at Scopus
  52. A. V. Das, J. James, X. Zhao, J. Rahnenführer, and I. Ahmad, “Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling,” Developmental Biology, vol. 273, no. 1, pp. 87–105, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. H. Koso, S. Satoh, and S. Watanabe, “c-kit marks late retinal progenitor cells and regulates their differentiation in developing mouse retina,” Developmental Biology, vol. 301, no. 1, pp. 141–154, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. C. Prigent and S. Dimitrov, “Phosphorylation of serine 10 in histone H3, what for?” Journal of Cell Science, vol. 116, no. 18, pp. 3677–3685, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. C. L. Schlamp, E. C. Johnson, Y. Li, J. C. Morrison, and R. W. Nickells, “Changes in Thy1 gene expression associated with damaged retinal ganglion cells,” Molecular Vision, vol. 7, pp. 192–201, 2001. View at Google Scholar · View at Scopus
  56. I. D. Raymond, A. Vila, U. C. N. Huynh, and N. C. Brecha, “Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina,” Molecular Vision, vol. 14, pp. 1559–1574, 2008. View at Google Scholar · View at Scopus