Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 691605, 9 pages
http://dx.doi.org/10.1155/2012/691605
Research Article

In Vivo Healing of Meniscal Lacerations Using Bone Marrow-Derived Mesenchymal Stem Cells and Fibrin Glue

Gail Holmes Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA

Received 16 June 2011; Revised 19 October 2011; Accepted 19 October 2011

Academic Editor: Wasim S. Khan

Copyright © 2012 Dora Ferris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Mauck, G. J. Martinez-Diaz, X. Yuan, and R. S. Tuan, “Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair,” Anatomical Record, vol. 290, no. 1, pp. 48–58, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. I. M. Levy, P. A. Torzilli, and I. D. Fisch, “The contribution of the menisci to the stability of the knee,” in Knee Meniscus: Basic and Clinical Foundation, V. C. Mow, S. P. Arnockzy, and D. W. Jackson, Eds., pp. 107–115, Raven Press, New York, NY, USA, 1992. View at Google Scholar
  3. D. C. Fithian, M. A. Kelly, and V. C. Mow, “Material properties and structure-function relationships in the menisci,” Clinical Orthopaedics and Related Research, no. 252, pp. 19–31, 1990. View at Google Scholar · View at Scopus
  4. P. H. Lento and V. Akuthota, “Meniscal injuries: a critical review,” Journal of Back and Musculoskeletal Rehabilitation, vol. 15, no. 2-3, pp. 55–62, 2000. View at Google Scholar · View at Scopus
  5. B. E. Baker, A. C. Peckham, F. Pupparo, and J. C. Sanborn, “Review of meniscal injury and associated sports,” American Journal of Sports Medicine, vol. 13, no. 1, pp. 1–4, 1985. View at Google Scholar · View at Scopus
  6. J. P. Walmsley, T. J. Phillips, and H. G. G. Townsend, “Meniscal tears in horses: an evaluation of clinical signs and arthroscopic treatment of 80 cases,” Equine Veterinary Journal, vol. 35, no. 4, pp. 402–406, 2003. View at Google Scholar · View at Scopus
  7. J. M. Cohen, D. W. Richardson, A. L. McKnight, M. W. Ross, and R. C. Boston, “Long-term outcome in 44 horses with stifle lameness after arthroscopic exploration and debridement,” Veterinary Surgery, vol. 38, no. 4, pp. 543–551, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. S. Meredith, E. Losina, N. N. Mahomed, J. Wright, and J. N. Katz, “Factors predicting functional and radiographic outcomes after arthroscopic partial meniscectomy: a review of the literature,” Arthroscopy, vol. 21, no. 2, pp. 211–223, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. C. Fabbriciani, L. Lucania, G. Milano, A. Schiavone Panni, and M. Evangelisti, “Meniscal allografts: cryopreservation vs deep-frozen technique: an experimental study in goats,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 5, no. 2, pp. 124–134, 1997. View at Google Scholar · View at Scopus
  10. M. Englund, E. M. Roos, H. P. Roos, and L. S. Lohmander, “Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection,” Rheumatology, vol. 40, no. 6, pp. 631–639, 2001. View at Google Scholar · View at Scopus
  11. K. Messner, “The concept of a permanent synthetic meniscus prosthesis: a critical discussion after 5 years of experimental investigations using Dacron and Teflon implants,” Biomaterials, vol. 15, no. 4, pp. 243–250, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Zur, E. Linder-Ganz, J. J. Elsner et al., “Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 2, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. T. G. van Tienen, G. Hannink, and P. Buma, “Meniscus replacement using synthetic materials,” Clinics in Sports Medicine, vol. 28, no. 1, pp. 143–156, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. M. Peretti, T. J. Gill, J. W. Xu, M. A. Randolph, K. R. Morse, and D. J. Zaleske, “Cell-based therapy for meniscal repair: a large animal study,” American Journal of Sports Medicine, vol. 32, no. 1, pp. 146–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Hoben and K. A. Athanasiou, “Meniscal repair with fibrocartilage engineering,” Sports Medicine and Arthroscopy Review, vol. 14, no. 3, pp. 129–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ishimura, H. Ohgushi, T. Habata, S. Tamai, and Y. Fujisawa, “Arthroscopic meniscal repair using fibrin glue—part I: experimental study,” Arthroscopy, vol. 13, no. 5, pp. 551–557, 1997. View at Publisher · View at Google Scholar
  17. C. Ibarra, J. A. Koski, and R. F. Warren, “Tissue engineering meniscus: cells and matrix,” Orthopedic Clinics of North America, vol. 31, no. 3, pp. 411–418, 2000. View at Google Scholar · View at Scopus
  18. C. Weinand, G. M. Peretti, S. B. Adams, L. J. Bonassar, M. A. Randolph, and T. J. Gill, “An allogenic cell-based implant for meniscal lesions,” American Journal of Sports Medicine, vol. 34, no. 11, pp. 1779–1789, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. Scotti, A. Pozzi, L. Mangiavini et al., “Healing of meniscal tissue by cellular fibrin glue: an in vivo study,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 17, no. 6, pp. 645–651, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. F. Togel, A. Cohen, P. Zhang, Y. Yang, Z. Hu, and C. Westenfelder, “Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury,” Stem Cells and Development, vol. 18, no. 3, pp. 475–485, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Ishimura, H. Ohgushi, T. Habata, S. Tamai, and Y. Fujisawa, “Arthroscopic meniscal repair using fibrin glue—part II: clinical applications,” Arthroscopy, vol. 13, no. 5, pp. 558–563, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. D. D. Frisbie, C. E. Kawcak, N. M. Werpy et al., “Evaluation of bone marrow derived stem cells and adipose derived stromal vascular fraction for the treatment of osteoarthritis using and equine experimental model,” American Association of Equine Practitioners Proceedings, vol. 52, pp. 420–421, 2006. View at Google Scholar
  24. D. D. Frisbie, B. A. Hague, and J. D. Kisiday, “Stem cells as a treatment for osteoarthritis,” Academy of Veterinary Surgeons Proceedings, pp. 39–42, 2007. View at Google Scholar
  25. J. M. Murphy, D. J. Fink, E. B. Hunziker, and F. P. Barry, “Stem cell therapy in a caprine model of osteoarthritis,” Arthritis and Rheumatism, vol. 48, no. 12, pp. 3464–3474, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman, and D. Karli, “Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells,” Medical Hypotheses, vol. 71, no. 6, pp. 900–908, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. D. Humphreys and J. V. Bonventre, “Mesenchymal stem cells in acute kidney injury,” Annual Review of Medicine, vol. 59, pp. 311–325, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. B. Lewis, J. M. Williams, N. Hallab, A. Virdi, A. Yanke, and B. J. Cole, “Multiple freeze-thaw cycled meniscal allograft tissue: a biomechanical, biochemical, and histologic analysis,” Journal of Orthopaedic Research, vol. 26, no. 1, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. D. Kisiday, P. W. Kopesky, C. H. Evans, A. J. Grodzinsky, C. W. Mcllwraith, and D. D. Frisbie, “Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures,” Journal of Orthopaedic Research, vol. 26, no. 3, pp. 322–331, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. H. Yoshida, K. Hirozane, and A. Kamiya, “Comparative study of autologous fibrin glues prepared by cryo-centrifugation, cryo-filtration, and ethanol precipitation methods,” Biological and Pharmaceutical Bulletin, vol. 22, no. 11, pp. 1222–1225, 1999. View at Google Scholar · View at Scopus
  32. G. M. Peretti, E. M. Caruso, M. A. Randolph, and D. J. Zaleske, “Meniscal repair using engineered tissue,” Journal of Orthopaedic Research, vol. 19, no. 2, pp. 278–285, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. A. Rodeo, A. Seneviratne, K. Suzuki, K. Felker, T. L. Wickiewicz, and R. F. Warren, “Histological analysis of human meniscal allografts: a preliminary report,” Journal of Bone and Joint Surgery Series A, vol. 82, no. 8, pp. 1071–1082, 2000. View at Google Scholar · View at Scopus
  34. S. P. Arnoczky and R. F. Warren, “microvasculature of the human meniscus,” American Journal of Sports Medicine, vol. 10, no. 2, pp. 90–95, 1982. View at Google Scholar · View at Scopus
  35. A. Hennerbichler, F. T. Moutos, D. Hennerbichler, J. B. Weinberg, and F. Guilak, “Repair response of the inner and outer regions of the porcine meniscus in vitro,” American Journal of Sports Medicine, vol. 35, no. 5, pp. 754–762, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. E. Haynesworth, M. A. Baber, and A. I. Caplan, “Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1a,” Journal of Cellular Physiology, vol. 166, no. 3, pp. 585–592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Bi, R. Schmitt, M. Israilova, H. Nishio, and L. G. Cantley, “Stromal cells protect against acute tubular injury via an endocrine effect,” Journal of the American Society of Nephrology, vol. 18, no. 9, pp. 2486–2496, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. A. Hulse, P. Shires, Y. Z. Abdelbaki, M. Hugh-Jones, and M. T. Kearney, “Vascular access channeling to increase meniscal regeneration in the dog,” Veterinary Surgery, vol. 15, no. 6, pp. 414–419, 1986. View at Google Scholar
  39. D. Klein, P. Weißhardt, V. Kleff, H. Jastrow, H. G. Jakob, and S. Ergün, “Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation,” PLoS ONE, vol. 6, no. 5, Article ID e20540, 2011. View at Publisher · View at Google Scholar · View at PubMed
  40. M. Uysal, S. Akpinar, F. Bolat, N. Cekin, M. Cinar, and N. Cesur, “Apoptosis in the traumatic and degenerative tears of human meniscus,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 16, no. 7, pp. 666–669, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Mesiha, D. Zurakowski, J. Soriano, J. H. Nielson, B. Zarins, and M. M. Murray, “Pathologic characteristics of the torn human meniscus,” American Journal of Sports Medicine, vol. 35, no. 1, pp. 103–112, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. L.-N. Cheng, X.-H. Duan, X.-M. Zhong et al., “Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: assessment using MRI,” American Journal of Roentgenology, vol. 196, no. 6, pp. 1381–1387, 2011. View at Publisher · View at Google Scholar · View at PubMed