Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 761843, 13 pages
http://dx.doi.org/10.1155/2012/761843
Research Article

Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture

1Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
2Coloplast Danmark, Holtedam 1-3, 3050 Humlebæk, Denmark

Received 21 March 2012; Accepted 4 September 2012

Academic Editor: Cesario Borlongan

Copyright © 2012 Pia S. Jensen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. R. Freed, R. E. Breeze, N. L. Rosenberg et al., “Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson's disease,” Progress in Brain Research, vol. 82, pp. 715–721, 1990. View at Google Scholar · View at Scopus
  3. C. R. Freed, P. E. Greene, R. E. Breeze et al., “Transplantation of embryonic dopamine neurons for severe Parkinson's disease,” The New England Journal of Medicine, vol. 344, no. 10, pp. 710–719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Brundin, O. Pogarell, P. Hagell et al., “Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease,” Brain, vol. 123, no. 7, pp. 1380–1390, 2000. View at Google Scholar · View at Scopus
  5. A. Björklund, S. B. Dunnett, P. Brundin et al., “Neural transplantation for the treatment of Parkinson's disease,” The Lancet Neurology, vol. 2, no. 7, pp. 437–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Whitman and C. A. Greer, “Adult neurogenesis and the olfactory system,” Progress in Neurobiology, vol. 89, no. 2, pp. 162–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Ehninger and G. Kempermann, “Neurogenesis in the adult hippocampus,” Cell and Tissue Research, vol. 331, no. 1, pp. 243–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Studer, V. Tabar, and R. D. G. McKay, “Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats,” Nature Neuroscience, vol. 1, no. 4, pp. 290–295, 1998. View at Google Scholar · View at Scopus
  9. P. Jensen, M. Bauer, C. H. Jensen et al., “Expansion and characterization of ventral mesencephalic precursor cells: effect of mitogens and investigation of FA1 as a potential dopaminergic marker,” Journal of Neuroscience Research, vol. 85, no. 9, pp. 1884–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Storch, G. Paul, M. Csete et al., “Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells,” Experimental Neurology, vol. 170, no. 2, pp. 317–325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Lie, G. Dziewczapolski, A. R. Willhoite, B. K. Kaspar, C. W. Shults, and F. H. Gage, “The adult substantia nigra contains progenitor cells with neurogenic potential,” Journal of Neuroscience, vol. 22, no. 15, pp. 6639–6649, 2002. View at Google Scholar · View at Scopus
  12. M. Zhao, S. Momma, K. Delfani et al., “Evidence for neurogenesis in the adult mammalian substantia nigra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7925–7930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Frielingsdorf, K. Schwarz, P. Brundin, and P. Mohapel, “No evidence for new dopaminergic neurons in the adult mammalian substantia nigra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10177–10182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hermann, M. Maisel, F. Wegner et al., “Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons,” Stem Cells, vol. 24, no. 4, pp. 949–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Shan, L. Chi, M. Bishop et al., “Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phyenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice,” Stem Cells, vol. 24, no. 5, pp. 1280–1287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Arenas, “Towards stem cell replacement therapies for Parkinson's disease,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 152–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Wijeyekoon and R. A. Barker, “Cell replacement therapy for Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1792, no. 7, pp. 688–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Ostenfeld and C. N. Svendsen, “Recent advances in stem cell neurobiology,” Advances and Technical Standards in Neurosurgery, vol. 28, pp. 3–89, 2003. View at Google Scholar · View at Scopus
  19. R. K. Andersen, M. Johansen, M. Blaabjerg, J. Zimmer, and M. Meyer, “Neural tissue-spheres: a microexplant culture method for propagation of precursor cells from the rat forebrain subventricular zone,” Journal of Neuroscience Methods, vol. 165, no. 1, pp. 55–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Andersen, J. Zimmer, L. U. Wahlberg, and M. Meyer, “Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon,” Experimental Neurology, vol. 211, no. 1, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. N. Svendsen, M. G. Ter Borg, R. J. E. Armstrong et al., “A new method for the rapid and long term growth of human neural precursor cells,” Journal of Neuroscience Methods, vol. 85, no. 2, pp. 141–152, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Google Scholar · View at Scopus
  23. K. Chen, T. Baxter, W. M. Muir, M. A. Groenen, and L. B. Schook, “Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa),” International Journal of Biological Sciences, vol. 3, no. 3, pp. 153–165, 2007. View at Google Scholar · View at Scopus
  24. P. Pillay and P. R. Manger, “Order-specific quantitative patterns of cortical gyrification,” European Journal of Neuroscience, vol. 25, no. 9, pp. 2705–2712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. G. Pond, S. L. Boleman, M. L. Fiorotto et al., “Perinatal ontogeny of brain growth in the domestic pig,” Proceedings of the Society for Experimental Biology and Medicine, vol. 223, no. 1, pp. 102–108, 2000. View at Google Scholar · View at Scopus
  26. A. Villa, E. Y. Snyder, A. Vescovi, and A. Martínez-Serrano, “Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS,” Experimental Neurology, vol. 161, no. 1, pp. 67–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. N. S. Christophersen, X. Meijer, J. R. Jørgensen et al., “Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain,” Brain Research Bulletin, vol. 70, no. 4–6, pp. 457–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Ye, K. Shimamura, J. L. R. Rubenstein, M. A. Hynes, and A. Rosenthal, “FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate,” Cell, vol. 93, no. 5, pp. 755–766, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Iacovitti and N. D. Stull, “Expression of tyrosine hydroxylase in newly differentiated neurons from a human cell line (hNT),” Neuroreport, vol. 8, no. 6, pp. 1471–1474, 1997. View at Google Scholar · View at Scopus
  30. C. N. Svendsen, D. J. Clarke, A. E. Rosser, and S. B. Dunnett, “Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system,” Experimental Neurology, vol. 137, no. 2, pp. 376–388, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. W. R. Douglas, “Of pigs and men and research—a review of applications and analogies of the pig, sus scrofa, in human medical research,” Space Life Sciences, vol. 3, no. 3, pp. 226–234, 1972. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Book and L. K. Bustad, “The fetal and neonatal pig in biomedical research,” Journal of Animal Science, vol. 38, no. 5, pp. 997–1002, 1974. View at Google Scholar · View at Scopus
  33. A. Onishi, M. Iwamoto, T. Akita et al., “Pig cloning by microinjection of fetal fibroblast nuclei,” Science, vol. 289, no. 5482, pp. 1188–1190, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. I. A. Polejaeva, S. H. Chen, T. D. Vaught et al., “Cloned pigs produced by nuclear transfer from adult somatic cells,” Nature, vol. 407, no. 6800, pp. 86–90, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Betthauser, E. Forsberg, M. Augenstein et al., “Production of cloned pigs from in vitro systems,” Nature Biotechnology, vol. 18, no. 10, pp. 1055–1059, 2000. View at Google Scholar · View at Scopus
  36. P. M. Kragh, A. L. Nielsen, J. Li et al., “Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw,” Transgenic Research, vol. 18, no. 4, pp. 545–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Du, J. Li, P. M. Kragh et al., “Piglets born from vitrified cloned blastocysts produced with a simplified method of delipation and nuclear transfer,” Cloning and Stem Cells, vol. 9, no. 4, pp. 469–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Mikkelsen, A. MØller, L. H. Jensen, A. Pedersen, J. B. Harajehi, and H. Pakkenberg, “MPTP-induced parkinsonism in minipigs: a behavioral, biochemical, and histological study,” Neurotoxicology and Teratology, vol. 21, no. 2, pp. 169–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Schumacher, S. A. Ellias, E. P. Palmer et al., “Transplantation of embryonic porcine mesencephalic tissue in patients with PD,” Neurology, vol. 54, no. 5, pp. 1042–1050, 2000. View at Google Scholar · View at Scopus
  40. T. Deacon, J. Schumacher, J. Dinsmore et al., “Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease,” Nature Medicine, vol. 3, no. 3, pp. 350–353, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. G. J. Molenaar, R. I. Hogenesch, M. E. S. Sprengers, and M. J. Staal, “Ontogenesis of embryonic porcine ventral mesencephalon in the perspective of its potential use as a xenograft in Parkinson's disease,” Journal of Comparative Neurology, vol. 382, no. 1, pp. 19–28, 1997. View at Google Scholar · View at Scopus
  42. C. W. Olanow, J. H. Kordower, and T. B. Freeman, “Fetal nigral transplantation as a therapy for Parkinson's disease,” Trends in Neurosciences, vol. 19, no. 3, pp. 102–109, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. P. M. Almqvist, E. Åkesson, L. U. Wahlberg, H. Pschera, Å. Seiger, and E. Sundström, “First trimester development of the human nigrostriatal dopamine system,” Experimental Neurology, vol. 139, no. 2, pp. 227–237, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. R. K. Andersen, H. R. Widmer, J. Zimmer, L. U. Wahlberg, and M. Meyer, “Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells,” Neuroscience Letters, vol. 464, no. 3, pp. 203–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. M. Cooper-Kuhn and H. Georg Kuhn, “Is it all DNA repair?: methodological considerations for detecting neurogenesis in the adult brain,” Developmental Brain Research, vol. 134, no. 1-2, pp. 13–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Osumi, H. Shinohara, K. Numayama-Tsuruta, and M. Maekawa, “Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator,” Stem Cells, vol. 26, no. 7, pp. 1663–1672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Parras, R. Galli, O. Britz et al., “Mash1 specifies neurons and oligodendrocytes in the postnatal brain,” EMBO Journal, vol. 23, no. 22, pp. 4495–4505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Pleasure, A. E. Collins, and D. H. Lowenstein, “Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development,” Journal of Neuroscience, vol. 20, no. 16, pp. 6095–6105, 2000. View at Google Scholar · View at Scopus
  49. V. G. Kukekov, E. D. Laywell, O. Suslov et al., “Multipotent stem/progenitor cells with similar properties arise from neurogenic regions of adult human brain,” Experimental Neurology, vol. 156, no. 2, pp. 333–344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. U. Lendahl, L. B. Zimmerman, and R. D. G. McKay, “CNS stem cells express a new class of intermediate filament protein,” Cell, vol. 60, no. 4, pp. 585–595, 1990. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Stagaard and K. Mollgard, “The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry,” Anatomy and Embryology, vol. 180, no. 1, pp. 17–28, 1989. View at Google Scholar · View at Scopus
  52. F. Doetsch, “The glial identity of neural stem cells,” Nature Neuroscience, vol. 6, no. 11, pp. 1127–1134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. D. R. Garcia, N. B. Doan, T. Imura, T. G. Bush, and M. V. Sofroniew, “GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain,” Nature Neuroscience, vol. 7, no. 11, pp. 1233–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. P. H. Schwartz, P. J. Bryant, T. J. Fuja, H. Su, D. K. O'Dowd, and H. Klassen, “Isolation and characterization of neural progenitor cells from post-mortem human cortex,” Journal of Neuroscience Research, vol. 74, no. 6, pp. 838–851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Keyser, “Basic aspects of development and maturation of the brain: embryological contributions to neuroendocrinology,” Psychoneuroendocrinology, vol. 8, no. 2, pp. 157–181, 1983. View at Publisher · View at Google Scholar · View at Scopus
  56. H. T. Kim, I. S. Kim, I. S. Lee, J. P. Lee, E. Y. Snyder, and K. In Park, “Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed,” Experimental Neurology, vol. 199, no. 1, pp. 222–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. T. D. Palmer, J. Takahashi, and F. H. Gage, “The adult rat hippocampus contains primordial neural stem cells,” Molecular and Cellular Neurosciences, vol. 8, no. 6, pp. 389–404, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Jensen, E. G. Pedersen, J. Zimmer, H. R. Widmer, and M. Meyer, “Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson's disease,” Brain Research, vol. 1218, pp. 13–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. N. D. Stull and L. Iacovitti, “Sonic hedgehog and FGF8: inadequate signals for the differentiation of a dopamine phenotype in mouse and human neurons in culture,” Experimental Neurology, vol. 169, no. 1, pp. 36–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. L. M. Farkas, N. Dünker, E. Roussa, K. Unsicker, and K. Krieglstein, “Transforming growth factor-βs are essential for the development of midbrain dopaminergic neurons in vitro and in vivo,” Journal of Neuroscience, vol. 23, no. 12, pp. 5178–5186, 2003. View at Google Scholar · View at Scopus
  61. D. Moses, J. Drago, Y. Teper, I. Gantois, D. I. Finkelstein, and M. K. Horne, “Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo,” Neuroscience, vol. 154, no. 2, pp. 606–620, 2008. View at Publisher · View at Google Scholar · View at Scopus