Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 804717, 18 pages
http://dx.doi.org/10.1155/2012/804717
Review Article

Adrenomedullin as a Growth and Cell Fate Regulatory Factor for Adult Neural Stem Cells

Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain

Received 25 May 2012; Revised 16 August 2012; Accepted 21 August 2012

Academic Editor: Graciela Gudino-Cabrera

Copyright © 2012 Sonia Martínez-Herrero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin (AM). AM, a 52-amino acid peptide which exerts a plethora of physiological functions, acts as a growth and cell fate regulatory factor for adult neural stem and progenitor cells. AM regulates the proliferation rate and the differentiation into neurons, astrocytes, and oligodendrocytes of stem/progenitor cells, probably through the PI3K/Akt pathway. The active peptides derived from the AM gene are able to regulate the cytoskeleton dynamics, which is extremely important for mature neural cell morphogenesis. In addition, a defective cytoskeleton may impair cell cycle and migration, so AM may contribute to neural stem cell growth regulation by allowing cells to pass through mitosis. Regulation of AM levels may contribute to program stem cells for their use in medical therapies.