Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 804717, 18 pages
http://dx.doi.org/10.1155/2012/804717
Review Article

Adrenomedullin as a Growth and Cell Fate Regulatory Factor for Adult Neural Stem Cells

Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain

Received 25 May 2012; Revised 16 August 2012; Accepted 21 August 2012

Academic Editor: Graciela Gudino-Cabrera

Copyright © 2012 Sonia Martínez-Herrero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kitada and M. Dezawa, “Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy,” Parkinson's Disease, vol. 2012, Article ID 873706, 9 pages, 2012. View at Publisher · View at Google Scholar
  2. N. K. Venkataramana, R. Pal, S. A. Rao et al., “Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: a pilot clinical study,” Stem Cells International, vol. 2012, Article ID 931902, 12 pages, 2012. View at Publisher · View at Google Scholar
  3. E. Dantuma, S. Merchant, and K. Sugaya, “Stem cells for the treatment of neurodegenerative diseases,” Stem Cell Research & Therapy, vol. 1, article 37, 2010. View at Publisher · View at Google Scholar
  4. S. Geuna, P. Borrione, M. Fornaro, and M. G. Giacobini-Robecchi, “Adult stem cells and neurogenesis: historical roots and state of the art,” Anatomical Record, vol. 265, no. 3, pp. 132–141, 2001. View at Google Scholar · View at Scopus
  5. P. J. Tsai, H. S. Wang, Y. M. Shyr et al., “Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats,” Journal of Biomedical Science, vol. 19, article 47, 2012. View at Google Scholar
  6. K. Hanabusa, N. Nagaya, T. Iwase et al., “Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats,” Stroke, vol. 36, no. 4, pp. 853–858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Stamm, B. Westphal, H. D. Kleine et al., “Autologous bone-marrow stem-cell transplantation for myocardial regeneration,” Lancet, vol. 361, no. 9351, pp. 45–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. U. G. Longo, S. Petrillo, E. Franceschetti, A. Berton, N. Maffulli, and V. Denaro, “Stem cells and gene therapy for cartilage repair,” Stem Cells International, vol. 2012, Article ID 168385, 9 pages, 2012. View at Publisher · View at Google Scholar
  9. B. Christ and S. Brückner, “Rodent animal models for surrogate analysis of cell therapy in acute liver failure,” Frontiers in Physiology, vol. 3, article 78, 2012. View at Publisher · View at Google Scholar
  10. R. Galli, A. Gritti, L. Bonfanti, and A. L. Vescovi, “Neural stem cells: an overview,” Circulation Research, vol. 92, no. 6, pp. 598–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pathania, L. D. Yan, and A. Bordey, “A symphony of signals conducts early and late stages of adult neurogenesis,” Neuropharmacology, vol. 58, no. 6, pp. 865–876, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Takei, K. Inoue, M. Ogoshi, T. Kawahara, H. Bannai, and S. Miyano, “Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator,” FEBS Letters, vol. 556, no. 1-3, pp. 53–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Roh, C. L. Chang, A. Bhalla, C. Klein, and S. Y. T. Hsu, “Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 7264–7274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Hinson, S. Kapas, and D. M. Smith, “Adrenomedullin, a multifunctional regulatory peptide,” Endocrine Reviews, vol. 21, no. 2, pp. 138–167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Kitamura, K. Kangawa, M. Kawamoto et al., “Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma,” Biochemical and Biophysical Research Communications, vol. 192, no. 2, pp. 553–560, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. J. López and A. Martínez, “Cell and molecular biology of the multifunctional peptide, adrenomedullin,” International Review of Cytology, vol. 221, pp. 1–92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Bełtowski and A. Jamroz, “Adrenomedullin—what do we know 10 years since its discovery?” Polish Journal of Pharmacology, vol. 56, no. 1, pp. 5–27, 2004. View at Google Scholar · View at Scopus
  18. J. Pérez-Castells, S. Martín-Santamaría, L. Nieto et al., “Structure of micelle-bound adrenomedullin, a first step towards the analysis of its interactions with receptors and small molecules,” Biopolymers, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Garayoa, A. Martínez, S. Lee et al., “Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis,” Molecular Endocrinology, vol. 14, no. 6, pp. 848–862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Pío, A. Martínez, E. J. Unsworth et al., “Complement factor H is a serum-binding protein for adrenomedullin, and the resulting complex modulates the bioactivities of both partners,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 12292–12300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Dupuis, A. Caron, and N. Ruël, “Biodistribution, plasma kinetics and quantification of single-pass pulmonary clearance of adrenomedullin,” Clinical Science, vol. 109, no. 1, pp. 97–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Martínez, H. R. Oh, E. J. Unsworth et al., “Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator,” Biochemical Journal, vol. 383, no. 3, pp. 413–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Juaneda, Y. Dumont, J. G. Chabot, A. Fournier, and R. Quirion, “Adrenomedullin receptor binding sites in rat brain and peripheral tissues,” European Journal of Pharmacology, vol. 474, no. 2-3, pp. 165–174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Kaafarani, S. Fernandez-Sauze, C. Berenguer et al., “Targeting adrenomedullin receptors with systemic delivery of neutralizing antibodies inhibits tumor angiogenesis and suppresses growth of human tumor xenografts in mice,” FASEB Journal, vol. 23, no. 10, pp. 3424–3435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. Poyner, P. M. Sexton, I. Marshall et al., “International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors,” Pharmacological Reviews, vol. 54, no. 2, pp. 233–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. L. M. McLatchie, N. J. Fraser, M. J. Main et al., “RAMPS regulate the transport and ligand specificity of the calcitonin- receptor-like receptor,” Nature, vol. 393, no. 6683, pp. 333–339, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Qi, G. Christopoulos, R. J. Bailey, A. Christopoulos, P. M. Sexton, and D. L. Hay, “Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function,” Molecular Pharmacology, vol. 74, no. 4, pp. 1059–1071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Gibbons, R. Dackor, W. Dunworth, K. Fritz-Six, and K. M. Caron, “Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling,” Molecular Endocrinology, vol. 21, no. 4, pp. 783–796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Shimekake, K. Nagata, S. Ohta et al., “Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells,” Journal of Biological Chemistry, vol. 270, no. 9, pp. 4412–4417, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Szokodi, P. Kinnunen, P. Tavi, M. Weckström, M. Tóth, and H. Ruskoaho, “Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide,” Circulation, vol. 97, no. 11, pp. 1062–1070, 1998. View at Google Scholar · View at Scopus
  31. S. Hippenstiel, M. Witzenrath, B. Schmeck et al., “Adrenomedullin reduces endothelial hyperpermeability,” Circulation Research, vol. 91, no. 7, pp. 618–625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Kureishi, S. Kobayashi, J. Nishimura, T. Nakano, and H. Kanaide, “Adrenomedullin decreases both cytosolic Ca2+ concentration and Ca2+-sensitivity in pig coronary arterial smooth muscle,” Biochemical and Biophysical Research Communications, vol. 212, no. 2, pp. 572–579, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. U. Ikeda, T. Kanbe, Y. Kawahara, M. Yokoyama, and K. Shimada, “Adrenomedullin augments inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes,” Circulation, vol. 94, no. 10, pp. 2560–2565, 1996. View at Google Scholar · View at Scopus
  34. T. Shimosawa, H. Matsui, G. Xing, K. Itakura, K. Ando, and T. Fujita, “Organ-protective effects of adrenomedullin,” Hypertension Research, vol. 26, pp. S109–S112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. H. Looi, K. A. Kane, A. R. McPhaden, and C. L. Wainwright, “Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats,” British Journal of Pharmacology, vol. 148, no. 5, pp. 599–609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sata, M. Kakoki, D. Nagata et al., “Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism,” Hypertension, vol. 36, no. 1, pp. 83–88, 2000. View at Google Scholar · View at Scopus
  37. J. B. Mannick, X. Q. Miao, and J. S. Stamler, “Nitric oxide inhibits Fas-induced apoptosis,” Journal of Biological Chemistry, vol. 272, no. 39, pp. 24125–24128, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Rössig, B. Fichtlscherer, K. Breitschopf et al., “Nitric oxide inhibits caspase-3 by S-nitrosation in vivo,” Journal of Biological Chemistry, vol. 274, no. 11, pp. 6823–6826, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. E. H. Sinz, P. M. Kochanek, C. E. Dixon et al., “Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice,” Journal of Clinical Investigation, vol. 104, no. 5, pp. 647–656, 1999. View at Google Scholar · View at Scopus
  40. H. Nishimatsu, E. Suzuki, D. Nagata et al., “Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta,” Circulation Research, vol. 89, no. 1, pp. 63–70, 2001. View at Google Scholar · View at Scopus
  41. S. Fernandez-Sauze, C. Delfino, K. Mabrouk et al., “Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors,” International Journal of Cancer, vol. 108, no. 6, pp. 797–804, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Okumura, N. Nagaya, T. Itoh et al., “Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-Kinase/Akt-dependent pathway,” Circulation, vol. 109, no. 2, pp. 242–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Fritz-Six, W. P. Dunworth, M. Li, and K. M. Caron, “Adrenomedullin signaling is necessary for murine lymphatic vascular development,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 40–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Parameswaran, P. Nambi, D. P. Brooks, and W. S. Spielman, “Regulation of glomerular mesangial cell proliferation in culture by adrenomedullin,” European Journal of Pharmacology, vol. 372, no. 1, pp. 85–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. M. K. Oehler, C. Norbury, S. Hague, M. C. P. Rees, and R. Bicknell, “Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth,” Oncogene, vol. 20, no. 23, pp. 2937–2945, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Shichiri and Y. Hirata, “Regulation of cell growth and apoptosis by adrenomedullin,” Hypertension Research, vol. 26, pp. S9–S14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Kano, M. Kohno, K. Yasunari et al., “Adrenomedullin as a novel antiproliferative factor of vascular smooth muscle cells,” Journal of Hypertension, vol. 14, no. 2, pp. 209–213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Iwasaki, S. Eguchi, M. Shichiri, F. Marumo, and Y. Hirata, “Adrenomedullin as a novel growth-promoting factor for cultured vascular smooth muscle cells: role of tyrosine kinase-mediated mitogen-activated protein kinase activation,” Endocrinology, vol. 139, no. 8, pp. 3432–3441, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Iwasaki, M. Shichiri, F. Marumo, and Y. Hirata, “Adrenomedullin stimulates proline-rich tyrosine kinase 2 in vascular smooth muscle cells,” Endocrinology, vol. 142, no. 2, pp. 564–572, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Shindo, Y. Kurihara, H. Nishimatsu et al., “Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene,” Circulation, vol. 104, no. 16, pp. 1964–1971, 2001. View at Google Scholar · View at Scopus
  51. T. Shimosawa, Y. Shibagaki, K. Ishibashi et al., “Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage,” Circulation, vol. 105, no. 1, pp. 106–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. T. Dackor, K. Fritz-Six, W. P. Dunworth, C. L. Gibbons, O. Smithies, and K. M. Caron, “Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene,” Molecular and Cellular Biology, vol. 26, no. 7, pp. 2511–2518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Ichikawa-Shindo, T. Sakurai, A. Kamiyoshi et al., “The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 29–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Dackor, K. Fritz-Six, O. Smithies, and K. Caron, “Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18094–18099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Plück, “Conditional mutagenesis in mice: the Cre/loxP recombination system,” International Journal of Experimental Pathology, vol. 77, no. 6, pp. 269–278, 1996. View at Google Scholar · View at Scopus
  56. A. P. Fernández, J. Serrano, L. Tessarollo, F. Cuttitta, and A. Martínez, “Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12581–12586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. O. Hurtado, J. Serrano, M. Sobrado et al., “Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model,” Neuroscience, vol. 171, no. 3, pp. 885–892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Julián, M. Cacho, M. A. García et al., “Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities,” European Journal of Medicinal Chemistry, vol. 40, no. 8, pp. 737–750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. G. Nicholls, “Hemodynamic and hormonal actions of adrenomedullin,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 8, pp. 1247–1253, 2004. View at Google Scholar · View at Scopus
  60. H. Hayakawa, Y. Hirata, M. Kakoki et al., “Role of nitric oxide-cGMP pathway in adrenomedullin-induced vasodilation in the rat,” Hypertension, vol. 33, no. 2, pp. 689–693, 1999. View at Google Scholar · View at Scopus
  61. R. Wangensteen, A. Quesada, J. Sainz, J. Duarte, F. Vargas, and A. Osuna, “Role of endothelium-derived relaxing factors in adrenomedullin-induced vasodilation in the rat kidney,” European Journal of Pharmacology, vol. 444, no. 1-2, pp. 97–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. B. C. Yang, H. Lippton, B. Gumusel, A. Hyman, and J. L. Mehta, “Adrenomedullin dilates rat pulmonary artery rings during hypoxia: role of nitric oxide and vasodilator prostaglandins,” Journal of Cardiovascular Pharmacology, vol. 28, no. 3, pp. 458–462, 1996. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Nishikimi, F. Yoshihara, Y. Mori, K. Kangawa, and H. Matsuoka, “Cardioprotective effect of adrenomedullin in heart failure,” Hypertension Research, vol. 26, pp. S121–S127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Jougasaki, C. M. Wei, L. L. Aarhus, D. M. Heublein, S. M. Sandberg, and J. C. Burnett, “Renal localization and actions of adrenomedullin: a natriuretic peptide,” American Journal of Physiology, vol. 268, no. 4, pp. F657–F663, 1995. View at Google Scholar · View at Scopus
  65. E. Zudaire, F. Cuttitta, and A. Martínez, “Regulation of pancreatic physiology by adrenomedullin and its binding protein,” Regulatory Peptides, vol. 112, no. 1-3, pp. 121–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Marinoni, R. Di Iorio, B. Villaccio et al., “Follicular fluid adrenomedullin concentrations in spontaneous and stimulated cycles: relationship to ovarian function and endothelin-1 and nitric oxide,” Regulatory Peptides, vol. 107, no. 1-3, pp. 125–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Kobayashi, T. Kubota, T. Aso, Y. Hirata, T. Imai, and F. Marumo, “Immunoreactive adrenomedullin (AM) concentration in maternal plasma during human pregnancy and AM expression in placenta,” European Journal of Endocrinology, vol. 142, no. 6, pp. 683–687, 2000. View at Google Scholar · View at Scopus
  68. M. Garayoa, E. Bodegas, F. Cuttitta, and L. M. Montuenga, “Adrenomedullin in mammalian embryogenesis,” Microscopy Research and Technique, vol. 57, no. 1, pp. 40–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Marutsuka, K. Hatakeyama, Y. Sato, A. Yamashita, A. Sumiyoshi, and Y. Asada, “Immunohistological localization and possible functions of adrenomedullin,” Hypertension Research, vol. 26, pp. S33–S40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. W. J. Rossowski, B. L. Cheng, N. Y. Jiang, and D. H. Coy, “Examination of somatostatin involvement in the inhibitory action of GIP, GLP-1, amylin and adrenomedullin on gastric acid release using a new SRIF antagonist analogue,” British Journal of Pharmacology, vol. 125, no. 5, pp. 1081–1087, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Martínez, T. H. Elsasser, C. Muro-Cacho et al., “Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument,” Endocrinology, vol. 138, no. 12, pp. 5597–5604, 1997. View at Google Scholar · View at Scopus
  72. E. Zudaire, S. Portal-Núñez, and F. Cuttitta, “The central role of adrenomedullin in host defense,” Journal of Leukocyte Biology, vol. 80, no. 2, pp. 237–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. L. M. Montuenga, A. Martíez, M. J. Miller, E. J. Unsworth, and F. Cuttitta, “Expression of adrenomedullin and its receptor during embryogenesis suggests autocrine or paracrine modes of action,” Endocrinology, vol. 138, no. 1, pp. 440–451, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Takahashi, F. Satoh, M. Sone et al., “Expression of adrenomedullin mRNA in the human brain and pituitary,” Peptides, vol. 18, no. 7, pp. 1051–1053, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Serrano, D. Alonso, A. P. Fernández et al., “Adrenomedullin in the central nervous system,” Microscopy Research and Technique, vol. 57, no. 2, pp. 76–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Kis, H. Kaiya, R. Nishi et al., “Cerebral endothelial cells are a major source of adrenomedullin,” Journal of Neuroendocrinology, vol. 14, no. 4, pp. 283–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Kis, M. A. Deli, H. Kobayashi et al., “Adrenomedullin regulates blood-brain barrier functions in vitro,” NeuroReport, vol. 12, no. 18, pp. 4139–4142, 2001. View at Google Scholar · View at Scopus
  78. B. Kis, C. S. Abrahám, M. A. Deli et al., “Adrenomedullin, an autocrine mediator of blood-brain barrier function,” Hypertension Research, vol. 26, pp. S61–S70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. W. K. Samson, T. C. Murphy, and Z. T. Resch, “Central mechanisms for the hypertensive effects of preproadrenomedullin- derived peptides in conscious rats,” American Journal of Physiology, vol. 274, no. 5, pp. R1505–R1509, 1998. View at Google Scholar · View at Scopus
  80. M. Saita, A. Shimokawa, T. Kunitake et al., “Central actions of adrenomedullin on cardiovascular parameters and sympathetic outflow in conscious rats,” American Journal of Physiology, vol. 274, no. 4, pp. R979–R984, 1998. View at Google Scholar · View at Scopus
  81. X. Wang, T. L. Yue, F. C. Barone et al., “Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11480–11484, 1995. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Dogan, Y. Suzuki, N. Koketsu et al., “Intravenous infusion of adrenomedullin and increase in regional cerebral blood flow and prevention of ischemic brain injury after middle cerebral artery occlusion in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 17, no. 1, pp. 19–25, 1997. View at Google Scholar · View at Scopus
  83. K. Miyashita, H. Itoh, H. Arai et al., “The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential,” Endocrinology, vol. 147, no. 4, pp. 1642–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Otsubo, S. Hyodo, H. Hashimoto et al., “Centrally administered adrenomedullin 5 activates oxytocin-secreting neurons in the hypothalamus and elevates plasma oxytocin level in rats,” Journal of Endocrinology, vol. 202, no. 2, pp. 237–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Ueta, Y. Hara, K. Kitamura et al., “Action sites of adrenomedullin in the rat brain: functional mapping by Fos expression,” Peptides, vol. 22, no. 11, pp. 1817–1824, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. S. M. Ji, Z. M. Wang, X. P. Li, and R. R. He, “Intracerebroventricular administration of adrenomedullin increases the expression of c-fos and activates nitric oxide-producing neurons in rat cardiovascular related brain nuclei,” Acta Physiologica Sinica, vol. 56, no. 3, pp. 328–334, 2004. View at Google Scholar · View at Scopus
  87. T. C. Murphy and W. K. Samson, “The novel vasoactive hormone, adrenomedullin, inhibits water drinking in the rat,” Endocrinology, vol. 136, no. 6, pp. 2459–2463, 1995. View at Google Scholar · View at Scopus
  88. W. K. Samson and T. C. Murphy, “Adrenomedullin inhibits salt appetite,” Endocrinology, vol. 138, no. 2, pp. 613–616, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. W. K. Samson, A. M. Bode, T. C. Murphy, and Z. T. Resch, “Antisense oligonucleotide treatment reveals a physiologically relevant role for adrenomedullin gene products in sodium intake,” Brain Research, vol. 818, no. 1, pp. 164–167, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. M. M. Taylor and W. K. Samson, “Adrenomedullin and the integrative physiology of fluid and electrolyte balance,” Microscopy Research and Technique, vol. 57, no. 2, pp. 105–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. G. M. Taylor, K. Meeran, D. O'Shea, D. M. Smith, M. A. Ghatei, and S. R. Bloom, “Adrenomedullin inhibits feeding in the rat by a mechanism involving calcitonin gene-related peptide receptors,” Endocrinology, vol. 137, no. 8, pp. 3260–3264, 1996. View at Publisher · View at Google Scholar · View at Scopus
  92. V. Martínez, F. Cuttitta, and Y. Taché, “Central action of adrenomedullin to inhibit gastric emptying in rats,” Endocrinology, vol. 138, no. 9, pp. 3749–3755, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. D. S. Jessop, “Central non-glucocorticoid inhibitors of the hypothalamo-pituitary- adrenal axis,” Journal of Endocrinology, vol. 160, no. 2, pp. 169–180, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. M. M. Taylor and W. K. Samson, “A possible mechanism for the action of adrenomedullin in brain to stimulate stress hormone secretion,” Endocrinology, vol. 145, no. 11, pp. 4890–4896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Shan and T. L. Krukoff, “Intracerebroventricular adrenomedullin stimulates the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system and production of hypothalamic nitric oxide,” Journal of Neuroendocrinology, vol. 13, no. 11, pp. 975–984, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. M. J. Follwell and A. V. Ferguson, “Adrenomedullin influences magnocellular and parvocellular neurons of paraventricular nucleus via separate mechanisms,” American Journal of Physiology, vol. 283, no. 6, pp. R1293–R1302, 2002. View at Google Scholar · View at Scopus
  97. N. Hobara, A. Nakamura, A. Ohtsuka et al., “Distribution of adrenomedullin-containing perivascular nerves in the rat mesenteric artery,” Peptides, vol. 25, no. 4, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. W. Ma, J. G. Chabot, and R. Quirion, “A role for adrenomedullin as a pain-related peptide in the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 16027–16032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. A. P. Fernández, J. Serrano, R. Martínez-Murillo, and A. Martínez, “Lack of adrenomedullin in the central nervous system results in apparently paradoxical alterations on pain sensitivity,” Endocrinology, vol. 151, no. 10, pp. 4908–4915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. B. E. Petersen and N. Terada, “Stem cells: a journey into a new frontier,” Journal of the American Society of Nephrology, vol. 12, no. 8, pp. 1773–1780, 2001. View at Google Scholar · View at Scopus
  101. M. Mimeault and S. K. Batra, “Recent progress on tissue-resident adult stem cell biology and their therapeutic implications,” Stem Cell Reviews, vol. 4, no. 1, pp. 27–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. I. R. Lemischka, “Microenvironmental regulation of hematopoietic stem cells,” Stem Cells, vol. 15, no. 1, pp. 63–68, 1997. View at Google Scholar · View at Scopus
  103. L. Li and T. Xie, “Stem cell niche: structure and function,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 605–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. C. A. Williams and E. B. Lavik, “Engineering the CNS stem cell microenvironment,” Regenerative Medicine, vol. 4, no. 6, pp. 865–877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Li, J. Zhou, L. Wang et al., “Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions,” Journal of Cell Biology, vol. 191, no. 3, pp. 631–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Mu, S. W. Lee, and F. H. Gage, “Signaling in adult neurogenesis,” Current Opinion in Neurobiology, vol. 20, no. 4, pp. 416–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. M. Chell and A. H. Brand, “Nutrition-responsive glia control exit of neural stem cells from quiescence,” Cell, vol. 143, no. 7, pp. 1161–1173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Chen and J. S. Khillan, “A novel signaling by vitamin A/retinol promotes self renewal of mouse embryonic stem cells by activating PI3K/Akt signaling pathway via insulin-like growth factor-1 receptor,” Stem Cells, vol. 28, no. 1, pp. 57–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Yin and L. Li, “The stem cell niches in bone,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1195–1201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. M. J. Miller, A. Martínez, E. J. Unsworth et al., “Adrenomedullin expression in human tumor cell lines,” Journal of Biological Chemistry, vol. 271, no. 38, pp. 23345–23351, 1996. View at Publisher · View at Google Scholar · View at Scopus
  111. D. J. Withers, H. A. Coppock, T. Seufferlein, D. M. Smith, S. R. Bloom, and E. Rozengurt, “Adrenomedullin stimulates DNA synthesis and cell proliferation via elevation of cAMP in Swiss 3T3 cells,” FEBS Letters, vol. 378, no. 1, pp. 83–87, 1996. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Kapas, D. W. Brown, P. M. Farthing, and E. Hagi-Pavli, “Adrenomedullin has mitogenic effects of human oral keratinocytes: involvement of cyclic AMP,” FEBS Letters, vol. 418, no. 3, pp. 287–290, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. M. R. Seghatoleslami, A. Martínez, F. Cuttitta, and R. A. Kosher, “Distribution and possible function of an adrenomedullin-like peptide in the developing chick limb bud,” International Journal of Developmental Biology, vol. 46, no. 7, pp. 957–961, 2002. View at Google Scholar · View at Scopus
  114. H. Kato, M. Shichiri, F. Marumo, and Y. Hirata, “Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells,” Endocrinology, vol. 138, no. 6, pp. 2615–2620, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Iwase, N. Nagaya, T. Fujii et al., “Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia,” Circulation, vol. 111, no. 3, pp. 356–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Nagaya, H. Mori, S. Murakami, K. Kangawa, and S. Kitamura, “Adrenomedullin: angiogenesis and gene therapy,” American Journal of Physiology, vol. 288, no. 6, pp. R1432–R1437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Shintani, T. Murohara, H. Ikeda et al., “Augmentation of postnatal neovascularization with autologous bone marrow transplantation,” Circulation, vol. 103, no. 6, pp. 897–903, 2001. View at Google Scholar · View at Scopus
  118. R. Kumar, A. Sharma, A. K. Pattnaik, and P. K. Varadwaj, “Stem cells: an overview with rescpect to cardiovascular and renal disease,” Journal of Natural Science, Biology and Medicine, vol. 1, pp. 43–52, 2010. View at Publisher · View at Google Scholar
  119. H. Ahmadi, M. M. Farahani, A. Kouhkan et al., “Five-Year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction,” Archives of Iranian Medicine, vol. 15, no. 1, pp. 32–35, 2012. View at Google Scholar
  120. D. Zisa, A. Shabbir, G. Suzuki, and T. Lee, “Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 834–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Kim, S. W. Kim, D. Nam, S. Kim, and Y. S. Yoon, “Cell therapy with bone marrow cells for myocardial regeneration,” Antioxidants and Redox Signaling, vol. 11, no. 8, pp. 1897–1911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Nagaya, K. Kangawa, T. Itoh et al., “Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy,” Circulation, vol. 112, no. 8, pp. 1128–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. G. C. Schatteman, H. D. Hanlon, C. Jiao, S. G. Dodds, and B. A. Christy, “Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 571–578, 2000. View at Google Scholar · View at Scopus
  124. N. Tokunaga, N. Nagaya, M. Shirai et al., “Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin,” Circulation, vol. 109, no. 4, pp. 526–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. T. Fujii, N. Nagaya, T. Iwase et al., “Adrenomedullin enhances therapeutic potency of bone marrow transplantation for myocardial infarction in rats,” American Journal of Physiology, vol. 288, no. 3, pp. H1444–H1450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Abe, M. Sata, E. Suzuki et al., “Effects of adrenomedullin on acute ischaemia-induced collateral development and mobilization of bone-marrow-derived cells,” Clinical Science, vol. 111, no. 6, pp. 381–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Aicher, C. Heeschen, C. Mildner-Rihm et al., “Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells,” Nature Medicine, vol. 9, no. 11, pp. 1370–1376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. K. Tsuchiya, K. Hida, Y. Hida et al., “Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization,” International Journal of Oncology, vol. 36, no. 6, pp. 1379–1386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. T. Yurugi-Kobayashi, H. Itoh, T. Schroeder et al., “Adrenomedullin/cyclic AMP pathway induces notch activation and differentiation of arterial endothelial cells from vascular progenitors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 1977–1984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. S. Mukouyama, D. Shin, S. Britsch, M. Taniguchi, and D. J. Anderson, “Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin,” Cell, vol. 109, no. 6, pp. 693–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. S. Mukouyama, H. P. Gerber, N. Ferrara, C. Gu, and D. J. Anderson, “Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback,” Development, vol. 132, no. 5, pp. 941–952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Emanueli, P. Schratzberger, R. Kirchmair, and P. Madeddu, “Paracrine control of vascularization and neurogenesis by neurotrophins,” British Journal of Pharmacology, vol. 140, no. 4, pp. 614–619, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Hobara, A. Nakamura, M. Goda, and H. Kawasaki, “Malfunction of vascular control in lifestyle-related diseases: distribution of adrenomedullin-containing perivascular nerves and its alteration in hypertension,” Journal of Pharmacological Sciences, vol. 96, no. 4, pp. 391–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. S. E. Hermansen, T. Lund, T. Kalstad, K. Ytrehus, and T. Myrmel, “Adrenomedullin augments the angiogenic potential of late outgrowth endothelial progenitor cells,” American Journal of Physiology, vol. 300, no. 4, pp. C783–C791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. C. J. Xian, R. Chung, and B. K. Foster, “Preclinical studies on mesenchymal stem cell-based therapy for growth plate cartilage injury repair,” Stem Cells International, vol. 2011, Article ID 570125, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. E. Zomorodian and M. Baghaban-Eslaminejad, “Mesenchymal stem cells as a potent cells source for bone regeneration,” Stem Cells International, vol. 2012, Article ID 980353, 9 pages, 2012. View at Publisher · View at Google Scholar
  137. J. J. Minguell and A. Erices, “Mesenchymal stem cells and the treatment of cardiac disease,” Experimental Biology and Medicine, vol. 231, no. 1, pp. 39–49, 2006. View at Google Scholar · View at Scopus
  138. R. C. Lai, T. S. Chen, and S. K. Lim, “Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease,” Regenerative Medicine, vol. 6, no. 4, pp. 481–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. P. Alfaro, M. Pagnia, A. Vincent et al., “The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18366–18371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Volarevic, N. Arsenijevic, M. L. Lukic, and M. Stojkovic, “Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus,” Stem Cells, vol. 29, no. 1, pp. 5–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. X. Xie, A. Sun, W. Zhu et al., “Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats,” Tohoku Journal of Experimental Medicine, vol. 226, pp. 29–36, 2012. View at Publisher · View at Google Scholar
  142. S. J. Kim, K. C. Park, J. U. Lee, K. J. Kim, and D. G. Kim, “Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes,” Journal of the Korean Surgical Society, vol. 81, pp. 176–186, 2011. View at Google Scholar
  143. Y. C. Huang, H. Ning, A. W. Shindel et al., “The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model,” Journal of Sexual Medicine, vol. 7, no. 4, pp. 1391–1400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Nishimatsu, E. Suzuki, S. Kumano et al., “Adrenomedullin mediates adipose tissue-derived stem cell-induced restoration of erectile function in diabetic rats,” Journal of Sexual Medicine, vol. 9, no. 2, pp. 482–493, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. J. J. Yang, X. Yang, Z. Q. Liu et al., “Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infracted myocardium in rabbits,” Tohoku Journal of Experimental Medicine, vol. 226, pp. 231–241, 2012. View at Publisher · View at Google Scholar
  146. J. P. Chute, G. G. Muramoto, H. K. Dressman, G. Wolfe, N. J. Chao, and S. Lin, “Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis,” Stem Cells, vol. 24, no. 5, pp. 1315–1327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. L. Del Pup, A. S. Belloni, G. Carraro, S. De Angeli, P. P. Parnigotto, and G. G. Nussdorfer, “Adrenomedullin is expressed in cord blood hematopoietic cells and stimulates their clonal growth,” International Journal of Molecular Medicine, vol. 11, no. 2, pp. 157–160, 2003. View at Google Scholar · View at Scopus
  148. S. Murakami, N. Nagaya, T. Itoh et al., “Adrenomedullin regenerates alveoli and vasculature in elastase-induced pulmonary emphysema in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 5, pp. 581–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. A. C. Kim, F. M. Barlaskar, J. H. Heaton et al., “In search of adrenocortical stem and progenitor cells,” Endocrine Reviews, vol. 30, no. 3, pp. 241–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. P. Rebuffat, C. Macchi, L. K. Malendowicz, and G. G. Nussdorfer, “Up-regulation of adrenomedullin gene expression in the regenerating rat adrenal cortex,” International Journal of Molecular Medicine, vol. 20, no. 4, pp. 551–555, 2007. View at Google Scholar · View at Scopus
  151. S. Frede, P. Freitag, T. Otto, C. Heilmaier, and J. Fandrey, “The proinflammatory cytokine interleukin 1β and hypoxia cooperatively induce the expression of adrenomedullin in ovarian carcinoma cells through hypoxia inducible factor 1 activation,” Cancer Research, vol. 65, no. 11, pp. 4690–4697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Rebuffat, C. Macchi, L. K. Malendowicz, and G. G. Nussdorfer, “Up-regulation of adrenomedullin receptor gene expression in activated local stem cells during rat adrenal regeneration,” International Journal of Molecular Medicine, vol. 20, no. 6, pp. 855–858, 2007. View at Google Scholar · View at Scopus
  153. C. Kintner, “Neurogenesis in embryos and in adult neural stem cells,” Journal of Neuroscience, vol. 22, no. 3, pp. 639–643, 2002. View at Google Scholar · View at Scopus
  154. C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Deleyrolle, S. Marchal-Victorion, C. Dromard et al., “Exogenous and fibroblast growth factor 2/epidermal growth factor-regulated endogenous cytokines regulate neural precursor cell growth and differentiation,” Stem Cells, vol. 24, no. 3, pp. 748–762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. I. A. Qureshi and M. F. Mehler, “The emerging role of epigenetics in stroke: III. Neural stem cell biology and regenerative medicine,” Archives of Neurology, vol. 68, no. 3, pp. 294–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. F. Guillemot, “Spatial and temporal specification of neural fates by transcription factor codes,” Development, vol. 134, no. 21, pp. 3771–3780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Sugimori, M. Nagao, N. Bertrand, C. M. Parras, F. Guillemot, and M. Nakafuku, “Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord,” Development, vol. 134, no. 8, pp. 1617–1629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. B. Berninger, F. Guillemot, and M. Götz, “Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells,” European Journal of Neuroscience, vol. 25, no. 9, pp. 2581–2590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. J. M. Gohlke, O. Armant, F. M. Parham et al., “Characterization of the proneural gene regulatory network during mouse telencephalon development,” BMC Biology, vol. 6, article 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. C. Dromard, S. Bartolami, L. Deleyrolle et al., “NG2 and olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells,” Stem Cells, vol. 25, no. 2, pp. 340–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. C. M. Parras, C. Hunt, M. Sugimori, M. Nakafuku, D. Rowitch, and F. Guillemot, “The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes,” Journal of Neuroscience, vol. 27, no. 16, pp. 4233–4242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Muroyama, Y. Fujiwara, S. H. Orkin, and D. H. Rowitch, “Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube,” Nature, vol. 438, no. 7066, pp. 360–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. T. Kuwabara and M. Asashima, “Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications,” Journal of Molecular Cell Biology, vol. 4, no. 3, pp. 133–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. T. Kuwabara, M. N. Kagalwala, Y. Onuma et al., “Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb,” EMBO Molecular Medicine, vol. 3, no. 12, pp. 742–754, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. C. Vicario-Abejón, M. J. Yusta-Boyo, C. Fernández-Moreno, and F. De Pablo, “Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia,” Journal of Neuroscience, vol. 23, no. 3, pp. 895–906, 2003. View at Google Scholar · View at Scopus
  167. E. Vergaño-Vera, H. R. Méndez-Gómez, A. Hurtado-Chong, J. C. Cigudosa, and C. Vicario-Abejón, “Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells,” Neuroscience, vol. 162, no. 1, pp. 39–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. E. Vergaño-Vera, A. P. Fernández, A. Hurtado-Chong, C. Vicario-Abejón, and A. Martínez, “Lack of adrenomedullin affects growth and differentiation of adult neural stem/progenitor cells,” Cell and Tissue Research, vol. 340, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. G. Otaegi, M. J. Yusta-Boyo, E. Vergaño-Vera et al., “Modulation of the Pl 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentation of neural stem/precursor cells,” Journal of Cell Science, vol. 119, no. 13, pp. 2739–2748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. W. Kim, S. O. Moon, M. J. Sung et al., “Angiogenic role of adrenomedullin through activation of Akt, mitogen-activated protein kinase, and focal adhesion kinase in endothelial cells,” FASEB J, vol. 17, pp. 1937–1939, 2003. View at Google Scholar
  171. F. Mannello, V. Medda, and G. A. Tonti, “Hypoxia and neural stem cells: from invertebrates to brain cancer stem cells,” vol. 55, no. 6, pp. 569–581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. D. L. Sackett, L. Ozbun, E. Zudaire et al., “Intracellular proadrenomedullin-derived peptides decorate the microtubules and contribute to cytoskeleton function,” Endocrinology, vol. 149, no. 6, pp. 2888–2898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. O. Demir, S. Singh, L. Klimaschewski, and I. A. Kurnaz, “From birth till death: neurogenesis, cell cycle, and neurodegeneration,” The Anatomical Record, vol. 292, no. 12, pp. 1953–1961, 2009. View at Publisher · View at Google Scholar · View at Scopus