Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 897183, 9 pages
http://dx.doi.org/10.1155/2012/897183
Review Article

Growth Factors and Anticatabolic Substances for Prevention and Management of Intervertebral Disc Degeneration

1Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy
2Centro Integrato di Ricerca (CIR), Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy
3Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK

Received 25 July 2011; Accepted 12 September 2011

Academic Editor: Wasim S. Khan

Copyright © 2012 Umile Giuseppe Longo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Masuda and H. S. An, “Growth factors and the intervertebral disc,” Spine Journal, vol. 4, no. 6, pp. 330S–340S, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Masuda, T. R. Oegema Jr., and H. S. An, “Growth factors and treatment of intervertebral disc degeneration,” Spine, vol. 29, no. 23, pp. 2757–2769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Haefeli, F. Kalberer, D. Saegesser, A. G. Nerlich, N. Boos, and G. Paesold, “The course of macroscopic degeneration in the human lumbar intervertebral disc,” Spine, vol. 31, no. 14, pp. 1522–1531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. R. S. Bibby and J. P. G. Urban, “Effect of nutrient deprivation on the viability of intervertebral disc cells,” European Spine Journal, vol. 13, no. 8, pp. 695–701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Adams, B. J. C. Freeman, H. P. Morrison, I. W. Nelson, and P. Dolan, “Mechanical initiation of intervertebral disc degeneration,” Spine, vol. 25, no. 13, pp. 1625–1636, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Longo, P. Ripalda, V. Denaro, and F. Forriol, “Morphologic comparison of cervical, thoracic, lumbar intervertebral discs of cynomolgus monkey (Macaca fascicularis),” European Spine Journal, vol. 15, no. 12, pp. 1845–1851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Vadalà, R. K. Studer, G. Sowa, F. Spiezia, C. Iucu, and V. Denaro, “Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion,” Spine, vol. 33, pp. 870–876, 2008. View at Google Scholar
  8. G. Vadalà, G. Sowa, M. Hubert, L. G. Gilbertson, V. Denaro, and J. D. Kang, “Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation,” Journal of Tissue Engineering and Regenerative Medicine, In press.
  9. S. T. Yoon and N. M. Patel, “Molecular therapy of the intervertebral disc,” European Spine Journal, vol. 15, no. 3, pp. S379–S388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. H. Guiot, R. G. Fessler, E. C. Benzel, A. T. Parsa, P. C. McCormick, and V. K. H. Sonntag, “Molecular biology of degenerative disc disease,” Neurosurgery, vol. 47, no. 5, pp. 1034–1040, 2000. View at Google Scholar · View at Scopus
  11. J. D. Kang, M. Stefanovic-Racic, L. A. McIntyre, H. I. Georgescu, and C. H. Evans, “Toward a biochemical understanding of human intervertebral disc degeneration and herniation: contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases,” Spine, vol. 22, no. 10, pp. 1065–1073, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Matsunaga, S. Nagano, T. Onishi, N. Morimoto, S. Suzuki, and S. Komiya, “Age-related changes in expression of transforming growth factor-β and receptors in cells of intervertebral discs,” Journal of Neurosurgery, vol. 98, no. 1, pp. 63–67, 2003. View at Google Scholar · View at Scopus
  13. N. Specchia, A. Pagnotta, A. Toesca, and F. Greco, “Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine,” European Spine Journal, vol. 11, no. 2, pp. 145–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tolonen, M. Grönblad, J. Virri, S. Seitsalo, T. Rytömaa, and E. Karaharju, “Transforming growth factor β receptor induction in herniated intervertebral disc tissue: an immunohistochemical study,” European Spine Journal, vol. 10, no. 2, pp. 172–176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Osada, H. Ohshima, H. Ishihara et al., “Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs,” Journal of Orthopaedic Research, vol. 14, no. 5, pp. 690–699, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Doita, T. Kanatani, T. Harada, and K. Mizuno, “Immunohistologic study of the ruptured intervertebral disc of the lumbar spine,” Spine, vol. 21, no. 2, pp. 235–241, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Melrose, S. Smith, C. B. Little, J. Kitson, S.-Y. Hwa, and P. Ghosh, “Spatial and temporal localization of transforming growth factor-β, fibroblast growth factor-2, and osteonectin, and identification of cells expressing α-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair,” Spine, vol. 27, no. 16, pp. 1756–1764, 2002. View at Publisher · View at Google Scholar
  18. J. Tolonen, M. Gronblad, J. Virri, S. Seitsalo, T. Rytomaa, and E. Karaharju, “Basic fibroblast growth factor immunoreactivity in blood vessels and cells of disc herniations,” Spine, vol. 20, no. 3, pp. 271–276, 1995. View at Google Scholar · View at Scopus
  19. T. Nakase, K. Ariga, S. Miyamoto et al., “Distribution of genes for bone morphogenetic protein-4, -6, growth differentiation factor-5, and bone morphogenetic protein receptors in the process of experimental spondylosis in mice,” Journal of Neurosurgery, vol. 94, no. 1, pp. 68–75, 2001. View at Google Scholar · View at Scopus
  20. J. Tolonen, M. Grönblad, J. Virri, S. Seitsalo, T. Rytömaa, and E. O. Karaharju, “Platelet-derived growth factor and vascular endothelial growth factor expression in disc herniation tissue: an immunohistochemical study,” European Spine Journal, vol. 6, no. 1, pp. 63–69, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Takae, S. Matsunaga, N. Origuchi et al., “Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc,” Spine, vol. 24, no. 14, pp. 1397–1401, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Tolonen, M. Grönblad, H. Vanharanta et al., “Growth factor expression in degenerated intervertebral disc tissue: an immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor,” European Spine Journal, vol. 15, no. 5, pp. 588–596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Le Maitre, S. M. A. Richardson, P. Baird, A. J. Freemont, and J. A. Hoyland, “Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc,” Journal of Pathology, vol. 207, no. 4, pp. 445–452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Thompson, T. R. Oegema, and D. S. Bradford, “Stimulation of mature canine intervertebral disc by growth factors,” Spine, vol. 16, no. 3, pp. 253–260, 1991. View at Google Scholar · View at Scopus
  25. A. G. Nerlich, B. E. Bachmeier, and N. Boos, “Expression of fibronectin and TGF-β1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue,” European Spine Journal, vol. 14, no. 1, pp. 17–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. E. Gruber, E. C. Fisher, B. Desai, A. A. Stasky, G. Hoelscher, and E. N. Hanley Jr., “Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-β1,” Experimental Cell Research, vol. 235, no. 1, pp. 13–21, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. H. E. Gruber, H. J. Norton, and E. N. Hanley, “Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro,” Spine, vol. 25, no. 17, pp. 2153–2157, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Okuda, A. Myoui, K. Ariga, T. Nakase, K. Yonenobu, and H. Yoshikawa, “Mechanisms of age-related decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells,” Spine, vol. 26, no. 22, pp. 2421–2426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. T. Yoon, K. S. Kim, J. Li et al., “The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro,” Spine, vol. 28, no. 16, pp. 1773–1780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Weibrich, W. K. G. Kleis, G. Hafner, and W. E. Hitzler, “Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count,” Journal of Cranio-Maxillofacial Surgery, vol. 30, no. 2, pp. 97–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Kim, S. H. Moon, H. Kim et al., “Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells,” Spine, vol. 28, no. 24, pp. 2679–2684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Masuda, K. Takegami, H. An et al., “Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads,” Journal of Orthopaedic Research, vol. 21, no. 5, pp. 922–930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. E. Adams, M. E. J. Billingham, and H. Muir, “The glycosaminoglycans in menisci in experimental and natural osteoarthritis,” Arthritis and Rheumatism, vol. 26, no. 1, pp. 69–76, 1983. View at Google Scholar · View at Scopus
  34. J. P. Norcross, G. E. Lester, P. Weinhold, and L. E. Dahners, “An in vivo model of degenerative disc disease,” Journal of Orthopaedic Research, vol. 21, no. 1, pp. 183–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Takegami, E. J. M. A. Thonar, H. S. An, H. Kamada, and K. Masuda, “Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1,” Spine, vol. 27, no. 12, pp. 1318–1324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Takegami, H. S. An, F. Kumano et al., “Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis,” Spine Journal, vol. 5, no. 3, pp. 231–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Y. L. Leung, S. C. Hung, L. C. Li et al., “Age-related degeneration of lumbar intervertebral discs in rabbits revealed by deuterium oxide-assisted MRI,” Osteoarthritis and Cartilage, vol. 16, no. 11, pp. 1312–1318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. E. E. Storm, T. V. Huynh, N. G. Copeland, N. A. Jenkins, D. M. Kingsley, and S. J. Lee, “Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily,” Nature, vol. 368, no. 6472, pp. 639–643, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Li, B. M. Leo, G. Beck, G. Balian, and D. G. Anderson, “Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor,” Spine, vol. 29, no. 20, pp. 2229–2234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Chujo, H. S. An, K. Akeda et al., “Effects of growth differentiation factor-5 on the intervertebral disc—in vitro bovine study and in vivo rabbit disc degeneration model study,” Spine, vol. 31, no. 25, pp. 2909–2917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Landesberg, M. Roy, and R. S. Glickman, “Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation,” Journal of Oral and Maxillofacial Surgery, vol. 58, no. 3, pp. 297–300, 2000. View at Google Scholar · View at Scopus
  42. K. Okuda, T. Kawase, M. Momose et al., “Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-β and modulates the proliferation of periodontally related cells in vitro,” Journal of Periodontology, vol. 74, no. 6, pp. 849–857, 2003. View at Google Scholar · View at Scopus
  43. K. Akeda, H. S. An, R. Pichika et al., “Platelet-rich plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and anulus fibrosus cells cultured in alginate beads,” Spine, vol. 31, no. 9, pp. 959–966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Vadalà, S. Sobajima, J. Y. Lee et al., “In vitro interaction between muscle-derived stem cells and nucleus pulposus cells,” Spine Journal, vol. 8, no. 5, pp. 804–809, 2008. View at Publisher · View at Google Scholar
  45. A. J. L. Walsh, D. S. Bradford, and J. C. Lotz, “In vivo growth factor treatment of degenerated intervertebral discs,” Spine, vol. 29, no. 2, pp. 156–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. S. An, K. Takegami, H. Kamada et al., “Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits,” Spine, vol. 30, no. 1, pp. 25–31, 2005. View at Google Scholar
  47. K. Masuda, Y. Aota, C. Muehleman et al., “A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration,” Spine, vol. 30, no. 1, pp. 5–14, 2005. View at Google Scholar · View at Scopus
  48. K. Masuda, Y. Imai, M. Okuma et al., “Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model,” Spine, vol. 31, no. 7, pp. 742–754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. W. Hoogendoorn, M. N. Helder, R. J. Kroeze, R. A. Bank, T. H. Smit, and P. I. J. M. Wuisman, “Reproducible long-term disc degeneration in a large animal model,” Spine, vol. 33, no. 9, pp. 949–954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. Hoogendoorn, P. I. Wuisman, T. H. Smit, V. E. Everts, and M. N. Helder, “Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat,” Spine, vol. 32, no. 17, pp. 1816–1825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. I. Boxberger, J. D. Auerbach, S. Sen, and D. M. Elliott, “An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc,” Spine, vol. 33, no. 2, pp. 146–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Imai, M. Okuma, H. S. An et al., “Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC,” Spine, vol. 32, no. 11, pp. 1197–1205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. N. A. Scott, P. F. Harris, and K. M. Bagnall, “A morphological and histological study of the postnatal development of intervertebral discs in the lumbar spine of the rabbit,” Journal of Anatomy, vol. 130, no. 1, pp. 75–81, 1980. View at Google Scholar · View at Scopus
  54. J. W. Larson III, E. A. Levicoff, L. G. Gilbertson, and J. D. Kang, “Biologic modification of animal models of intervertebral disc degeneration,” The Journal of Bone and Joint Surgery. American, vol. 88, no. 2, pp. 83–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Y. Huang, J. J. Yan, C. C. Hsieh, M. S. Chang, and R. M. Lin, “The in vivo biological effects of intradiscal recombinant human bone morphogenetic protein-2 on the injured intervertebral disc: an animal experiment,” Spine, vol. 32, no. 11, pp. 1174–1180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Nagae, T. Ikeda, Y. Mikami et al., “Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres,” Tissue Engineering, vol. 13, no. 1, pp. 147–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Wang, D.-K. Ruan, C. Zhang, D.-L. Wang, H. Xin, and Y. Zhang, “Effects of adeno-associated virus-2-mediated human BMP-7 gene transfection on the phenotype of nucleus pulposus cells,” Journal of Orthopaedic Research, vol. 29, no. 6, pp. 838–845, 2011. View at Publisher · View at Google Scholar
  58. H. Liang, S. Y. Ma, G. Feng, F. H. Shen, and X. Joshua Li, “Therapeutic effects of adenovirus-mediated growth and differentiation factor-5 in a mice disc degeneration model induced by annulus needle puncture,” Spine Journal, vol. 10, no. 1, pp. 32–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Ganey, J. Libera, V. Moos et al., “Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc,” Spine, vol. 28, no. 23, pp. 2609–2620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. H. E. Gruber, T. L. Johnson, K. Leslie et al., “Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat,” Spine, vol. 27, no. 15, pp. 1626–1633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Nishimura and J. Mochida, “Percutaneous reinsertion of the nucleus pulposus: an experimental study,” Spine, vol. 23, no. 14, pp. 1531–1539, 1998. View at Publisher · View at Google Scholar
  62. M. Okuma, J. Mochida, K. Nishimura, K. Sakabe, and K. Seiki, “Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study,” Journal of Orthopaedic Research, vol. 18, no. 6, pp. 988–997, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Wehling, K. P. Schulitz, P. D. Robbins, C. H. Evans, and J. A. Reinecke, “Transfer of genes to chondrocytic cells of the lumbar spine: proposal for a treatment strategy of spinal disorders by local gene therapy,” Spine, vol. 22, no. 10, pp. 1092–1097, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. J. P. G. Urban, S. Smith, and J. C. T. Fairbank, “Nutrition of the intervertebral disc,” Spine, vol. 29, no. 23, pp. 2700–2709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. H. S. An, E. J. M. A. Thonar, and K. Masuda, “Biological repair of intervertebral disc,” Spine, vol. 28, no. 15, pp. S86–S92, 2003. View at Google Scholar · View at Scopus
  66. J. Liu, P. J. Roughley, and J. S. Mort, “Identification of human intervertebral disc stromelysin and its involvement in matrix degradation,” Journal of Orthopaedic Research, vol. 9, pp. 568–575, 1991. View at Google Scholar
  67. S. Roberts, B. Caterson, J. Menage, E. H. Evans, D. C. Jaffray, and S. M. Eisenstein, “Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc,” Spine, vol. 25, no. 23, pp. 3005–3013, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Fujita, T. Nakagawa, K. Hirabayashi, and Y. Nagai, “Neutral proteinases in human intervertebral disc: role in degeneration and probable origin,” Spine, vol. 18, no. 13, pp. 1766–1773, 1993. View at Google Scholar · View at Scopus
  69. H. Nagase and J. F. Woessner Jr., “Matrix metalloproteinases,” The Journal of Biological Chemistry, vol. 274, pp. 21491–21494, 1999. View at Google Scholar
  70. S. Roberts, H. Evans, J. Menage et al., “TNFα-stimulated gene product (TSG-6) and its binding protein, IαI, in the human intervertebral disc: new molecules for the disc,” European Spine Journal, vol. 14, no. 1, pp. 36–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. C. J. Wallach, S. Sobajima, Y. Watanabe et al., “Gene transfer of the catabolic inhibitor TIMP-1 increases mesured proteoglycans in cells from degenerated human intervertebral discs,” Spine, vol. 28, no. 20, pp. 2331–2337, 2003. View at Publisher · View at Google Scholar
  72. G. Hashimoto, T. Aoki, H. Nakamura, K. Tanzawa, and Y. Okada, “Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4),” FEBS Letters, vol. 494, no. 3, pp. 192–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Hashimoto, M. Shimoda, and Y. Okada, “ADAMTS4 (aggrecanase-1) interaction with the C-terminal domain of fibronectin inhibits proteolysis of aggrecan,” The Journal of Biological Chemistry, vol. 279, no. 31, pp. 32483–32491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. C. H. Evans, E. Gouze, J. N. Gouze, P. D. Robbins, and S. C. Ghivizzani, “Gene therapeutic approaches-transfer in vivo,” Advanced Drug Delivery Reviews, vol. 58, no. 2, pp. 243–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Bandara, G. M. Mueller, J. Galea-Lauri et al., “Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10764–10768, 1993. View at Publisher · View at Google Scholar · View at Scopus
  76. U. Müller-Ladner, C. R. Roberts, B. N. Franklin et al., “Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective,” Journal of Immunology, vol. 158, no. 7, pp. 3492–3498, 1997. View at Google Scholar · View at Scopus
  77. K. Olmarker and B. Rydevik, “Selective inhibition of tumor necrosis factor-α prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica,” Spine, vol. 26, no. 8, pp. 863–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Tobinick and S. Davoodifar, “Efficacy of etanercept delivered by perispinal administration for chronic back and/or neck disc-related pain: a study of clinical observations in 143 patients,” Current Medical Research and Opinion, vol. 20, no. 7, pp. 1075–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Horii, S. Orita, M. Nagata et al., “Direct application of the tumor necrosis factor-α inhibitor, etanercept, into a punctured intervertebral disc decreases calcitonin gene-related peptide expression in rat dorsal root ganglion neurons,” Spine, vol. 36, no. 2, pp. E80–E85, 2011. View at Publisher · View at Google Scholar
  80. S. P. Cohen, D. Wenzell, R. W. Hurley et al., “A double-blind, placebo-controlled, dose-response pilot study evaluating intradiscal etanercept in patients with chronic discogenic low back pain or lumbosacral radiculopathy,” Anesthesiology, vol. 107, no. 1, pp. 99–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Okoro, S. I. Tafazal, S. Longworth, and P. J. Sell, “Tumor necrosis α-blocking agent (etanercept): a triple blind randomized controlled trial of its use in treatment of sciatica,” Journal of Spinal Disorders and Techniques, vol. 23, no. 1, pp. 74–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Yamada, K. Watanabe, T. Saito et al., “Esculetin (dihydroxycoumarin) inhibits the production of matrix metalloproteinases in cartilage explants, and oral administration of its prodrug, CPA-926, suppresses cartilage destruction in rabbit experimental osteoarthritis,” Journal of Rheumatology, vol. 26, no. 3, pp. 654–662, 1999. View at Google Scholar · View at Scopus