Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013 (2013), Article ID 232896, 11 pages
http://dx.doi.org/10.1155/2013/232896
Research Article

Effects of Severe Hypoxia on Bone Marrow Mesenchymal Stem Cells Differentiation Potential

1Rheumatology Division, INIBIC Hospital Universitario A Coruña, C/As Xubias S/N, 15006 A Coruña, Spain
2CIBER-BBN-Cellular Therapy Area, Hospital Universitario A Coruña, C/As Xubias S/N, 15006 A Coruña, Spain
3Catedra Bioiberica-University of A Coruña, Hospital Universitario A Coruña, C/As Xubias S/N, 15006 A Coruña, Spain
4Department of Medicine, INIBIC University of A Coruña, Campus de Oza S/N, 15006 A Coruña, Spain
5Department of Medicine, University of Santiago de Compostela, A Coruña, Spain
6Osteoarticular and Aging Research Laboratory, Hospital Universitario A Coruña, C/As Xubias S/N, 15006 A Coruña, Spain

Received 1 January 2013; Revised 27 June 2013; Accepted 30 June 2013

Academic Editor: B. Bunnell

Copyright © 2013 Claudia Cicione et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Barlow, G. Brooke, K. Chatterjee et al., “Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells,” Stem Cells and Development, vol. 17, no. 6, pp. 1095–1107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Hombach-Klonisch, S. Panigrahi, I. Rashedi et al., “Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications,” Journal of Molecular Medicine, vol. 86, no. 12, pp. 1301–1314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Minguell, P. Conget, and A. Erices, “Biology and clinical utilization of mesenchymal progenitor cells,” Brazilian Journal of Medical and Biological Research, vol. 33, no. 8, pp. 881–887, 2000. View at Google Scholar · View at Scopus
  4. G. Pasquinelli, P. Tazzari, F. Ricci et al., “Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta,” Ultrastructural Pathology, vol. 31, no. 1, pp. 23–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rydén, A. Dicker, C. Götherström et al., “Functional characterization of human mesenchymal stem cell-derived adipocytes,” Biochemical and Biophysical Research Communications, vol. 311, no. 2, pp. 391–397, 2003. View at Publisher · View at Google Scholar
  6. A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000. View at Google Scholar · View at Scopus
  7. F. Djouad, C. Bony, T. Häupl et al., “Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells,” Arthritis Research & Therapy, vol. 7, no. 6, pp. R1304–R1315, 2005. View at Google Scholar · View at Scopus
  8. Y. Sakaguchi, I. Sekiya, K. Yagishita, and T. Muneta, “Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source,” Arthritis and Rheumatism, vol. 52, no. 8, pp. 2521–2529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sato, K. Uchida, H. Nakajima et al., “Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis,” Arthritis Research and Therapy, vol. 14, article R31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Pittenger, “Mesenchymal stem cells from adult bone marrow,” Methods in Molecular Biology, vol. 449, pp. 27–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. P. Lasala, J. A. Silva, B. A. Kusnick, and J. J. Minguell, “Combination stem cell therapy for the treatment of medically refractory coronary ischemia: A Phase I study,” Cardiovascular Revascularization Medicine, vol. 12, no. 1, pp. 29–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Lee, J. M. Hong, G. J. Moon et al., “A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke,” Stem Cells, vol. 28, no. 6, pp. 1099–1106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. K. Satija, V. K. Singh, Y. K. Verma et al., “Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine,” Journal of Cellular and Molecular Medicine, vol. 13, no. 11-12, pp. 4385–4402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Talks, H. Turley, K. C. Gatter et al., “The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages,” American Journal of Pathology, vol. 157, no. 2, pp. 411–421, 2000. View at Google Scholar · View at Scopus
  15. A. J. Giaccia, M. C. Simon, and R. Johnson, “The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease,” Genes and Development, vol. 18, no. 18, pp. 2183–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Carrancio, N. López-Holgado, F. M. Sánchez-Guijo et al., “Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification,” Experimental Hematology, vol. 36, no. 8, pp. 1014–1021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kanichai, D. Ferguson, P. J. Prendergast, and V. A. Campbell, “Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1α,” Journal of Cellular Physiology, vol. 216, no. 3, pp. 708–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Koay and K. A. Athanasiou, “Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality,” Osteoarthritis and Cartilage, vol. 16, no. 12, pp. 1450–1456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. L. Grayson, F. Zhao, R. Izadpanah, B. Bunnell, and T. Ma, “Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs,” Journal of Cellular Physiology, vol. 207, no. 2, pp. 331–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Potier, E. Ferreira, R. Andriamanalijaona et al., “Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression,” Bone, vol. 40, no. 4, pp. 1078–1087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Richler and D. Yaffe, “The in vitro cultivation and differentiation capacities of myogenic cell lines,” Developmental Biology, vol. 23, no. 1, pp. 1–22, 1970. View at Google Scholar · View at Scopus
  23. B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, “In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells,” Experimental Cell Research, vol. 238, no. 1, pp. 265–272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2nd edition, 1989.
  26. S.-P. Hung, J. H. Ho, Y.-R. V. Shih, T. Lo, and O. K. Lee, “Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 30, no. 2, pp. 260–266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Robins, N. Akeno, A. Mukherjee et al., “Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9,” Bone, vol. 37, no. 3, pp. 313–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Salim, A. J. Giaccia, and M. T. Longaker, “Stem cell differentiation,” Nature Biotechnology, vol. 22, pp. 804–805, 2004. View at Publisher · View at Google Scholar
  29. M. C. Simon and B. Keith, “The role of oxygen availability in embryonic development and stem cell function,” Nature Reviews Molecular Cell Biology, vol. 9, no. 4, pp. 285–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Grant and B. Smith, “Bone marrow gas tensions, bone marrow blood flow, and erythropoiesis in man,” Annals of Internal Medicine, vol. 58, pp. 801–809, 1963. View at Google Scholar · View at Scopus
  31. C. Holzwarth, M. Vaegler, F. Gieseke et al., “Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells,” BMC Cell Biology, vol. 11, article 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Chow, L. A. Wenning, W. M. Miller, and E. T. Papoutsakis, “Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model,” Biophysical Journal, vol. 81, pp. 675–684, 2001. View at Publisher · View at Google Scholar
  33. D. C. Chow, L. A. Wenning, W. M. Miller, and E. T. Papoutsakis, “Modeling pO2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models,” Biophysical Journal, vol. 81, no. 2, pp. 685–696, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Lavrentieva, I. Majore, C. Kasper, and R. Hass, “Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells,” Cell Communication and Signaling, vol. 8, article 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Michiels, E. Minet, D. Mottet, and M. Raes, “Regulation of gene expression by oxygen: NF-κB and HIF-1, two extremes,” Free Radical Biology and Medicine, vol. 33, no. 9, pp. 1231–1242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. G. Valorani, A. Germani, W. R. Otto et al., “Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential,” Cell and Tissue Research, vol. 341, no. 1, pp. 111–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. A. M. van Oorschot, A. M. Smits, E. Pardali, P. A. Doevendans, and M.-J. Goumans, “Low oxygen tension positively influences cardiomyocyte progenitor cell function,” Journal of Cellular and Molecular Medicine, vol. 15, no. 12, pp. 2723–2734, 2011. View at Publisher · View at Google Scholar
  38. S. Wang, Y. Zhou, C. N. Seavey et al., “Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia,” Stem Cell Research, vol. 4, no. 2, pp. 117–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. D. P. Lennon, J. M. Edmison, and A. I. Caplan, “Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis,” Journal of Cellular Physiology, vol. 187, no. 3, pp. 345–355, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Parrinello, E. Samper, A. Krtolica, J. Goldstein, S. Melov, and J. Campisi, “Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts,” Nature Cell Biology, vol. 5, no. 8, pp. 741–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. G. D'Ippolito, S. Diabira, G. A. Howard, B. A. Roos, and P. C. Schiller, “Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells,” Bone, vol. 39, no. 3, pp. 513–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Malladi, Y. Xu, M. Chiou, A. J. Giaccia, and M. T. Longaker, “Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells,” American Journal of Physiology, vol. 290, no. 4, pp. C1139–C1146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Schofield, “The relationship between the spleen colony-forming cell and the haemopoietic stem cell,” Blood Cells, vol. 4, no. 1-2, pp. 7–25, 1978. View at Google Scholar · View at Scopus
  44. T. Ezashi, P. Das, and R. M. Roberts, “Low O2 tensions and the prevention of differentiation of hES cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 13, pp. 4783–4788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Genbacev and R. K. Miller, “Post-implantation differentiation and proliferation of cytotrophoblast cells: in vitro models—a review,” Placenta, vol. 21, supplement A, pp. S45–S49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Fehrer, R. Brunauer, G. Laschober et al., “Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan,” Aging Cell, vol. 6, no. 6, pp. 745–757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Fink, L. Abildtrup, K. Fogd et al., “Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia,” Stem Cells, vol. 22, no. 7, pp. 1346–1355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Ren, Y. Cao, Q. Zhao et al., “Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions,” Biochemical and Biophysical Research Communications, vol. 347, no. 1, pp. 12–21, 2006. View at Publisher · View at Google Scholar
  49. D. W. Wang, B. Fermor, J. M. Gimble, H. A. Awad, and F. Guilak, “Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells,” Journal of Cellular Physiology, vol. 204, no. 1, pp. 184–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. G. L. Semenza, “HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus,” Cell, vol. 107, no. 1, pp. 1–3, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. L. A. Mylotte, A. M. Duffy, M. Murphy et al., “Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment,” Stem Cells, vol. 26, no. 5, pp. 1325–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Papandreou, R. A. Cairns, L. Fontana, A. L. Lim, and N. C. Denko, “HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption,” Cell Metabolism, vol. 3, no. 3, pp. 187–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. F. dos Santos, P. Z. Andrade, J. S. Boura, M. M. Abecasis, C. L. da Silva, and J. M. S. Cabral, “Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia,” Journal of Cellular Physiology, vol. 223, no. 1, pp. 27–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Ohnishi, T. Yasuda, S. Kitamura, and N. Nagaya, “Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells,” Stem Cells, vol. 25, no. 5, pp. 1166–1177, 2007. View at Publisher · View at Google Scholar · View at Scopus