Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 507301, 7 pages
http://dx.doi.org/10.1155/2013/507301
Review Article

Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers

1Department of Physiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan
2Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
3Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
4Institute of Medical Science, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo 160-8402, Japan

Received 26 January 2013; Accepted 7 May 2013

Academic Editor: Radhika Pochampally

Copyright © 2013 Yo Mabuchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Piersma, K. G. M. Brockbank, and R. E. Ploemacher, “Characterization of fibroblastic stromal cells from murine bone marrow,” Experimental Hematology, vol. 13, no. 4, pp. 237–243, 1985. View at Google Scholar · View at Scopus
  3. S. A. Kuznetsov, A. J. Friedenstein, and P. G. Robey, “Factors required for bone marrow stromal fibroblast colony formation in vitro,” British Journal of Haematology, vol. 97, no. 3, pp. 561–570, 1997. View at Google Scholar · View at Scopus
  4. P. A. Conget and J. J. Minguell, “Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells,” Journal of Cellular Physiology, vol. 181, pp. 67–73, 1999. View at Google Scholar
  5. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen, “Isolation of multipotent mesenchymal stem cells from umbilical cord blood,” Blood, vol. 103, no. 5, pp. 1669–1675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Shi and S. Gronthos, “Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp,” Journal of Bone and Mineral Research, vol. 18, no. 4, pp. 696–704, 2003. View at Google Scholar · View at Scopus
  9. B. L. Yen, H. I. Huang, C. C. Chien et al., “Isolation of multipotent cells from human term placenta,” Stem Cells, vol. 23, no. 1, pp. 3–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. V. L. Battula, S. Treml, H. Abele, and H. J. Bühring, “Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody,” Differentiation, vol. 76, no. 4, pp. 326–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Orbay, M. Tobita, and H. Mizuno, “Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications,” Stem Cells International, vol. 2012, Article ID 461718, 9 pages, 2012. View at Publisher · View at Google Scholar
  12. T. M. Liu, M. Martina, D. W. Hutmacher, J. H. P. O. Hui, H. L. Eng, and B. Lim, “Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal Stem Cells into three mesenchymal lineages,” Stem Cells, vol. 25, no. 3, pp. 750–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. S. Stappenbeck and H. Miyoshi, “The role of stromal stem cells in tissue regeneration and wound repair,” Science, vol. 324, no. 5935, pp. 1666–1669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. De Bari, F. Dell'Accio, F. Vandenabeele, J. R. Vermeesch, J. M. Raymackers, and F. P. Luyten, “Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane,” Journal of Cell Biology, vol. 160, no. 6, pp. 909–918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Liu, L. Wang, T. Kikuiri et al., “Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha,” Nature Medicine, vol. 17, pp. 1594–1601, 2011. View at Publisher · View at Google Scholar
  16. S. Zhao, R. Wehner, M. Bornhäuser, R. Wassmuth, M. Bachmann, and M. Schmitz, “Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders,” Stem Cells and Development, vol. 19, no. 5, pp. 607–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. M. Spaggiari, A. Capobianco, S. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation,” Blood, vol. 107, no. 4, pp. 1484–1490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Digirolamo, D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop, “Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate,” British Journal of Haematology, vol. 107, no. 2, pp. 275–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. U. Ben-David, Y. Mayshar, and N. Benvenisty, “Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells,” Cell Stem Cell, vol. 9, no. 2, pp. 97–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Quirici, D. Soligo, P. Bossolasco, F. Servida, C. Lumini, and G. L. Deliliers, “Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies,” Experimental Hematology, vol. 30, no. 7, pp. 783–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Boiret, C. Rapatel, R. Veyrat-Masson et al., “Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow,” Experimental Hematology, vol. 33, no. 2, pp. 219–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Friedenstein, U. F. Deriglasova, and N. N. Kulagina, “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974. View at Google Scholar · View at Scopus
  25. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Google Scholar · View at Scopus
  26. A. H. Reddi and C. B. Huggins, “Formation of bone marrow in fibroblast transformation ossicles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 6, pp. 2212–2216, 1975. View at Google Scholar · View at Scopus
  27. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Google Scholar · View at Scopus
  28. P. Bianco, X. Cao, P. S. Frenette et al., “The meaning, the sense and the significance: translating the science of mesenchymal Stem Cells into medicine,” Nature Medicine, vol. 19, pp. 35–42, 2013. View at Publisher · View at Google Scholar
  29. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Koide, S. Morikawa, Y. Mabuchi et al., “Two distinct stem cell lineages in murine bone marrow,” Stem Cells, vol. 25, no. 5, pp. 1213–1221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. D. D. Houlihan, Y. Mabuchi, S. Morikawa et al., “Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha,” Nature Protocols, vol. 7, pp. 2103–2111, 2012. View at Publisher · View at Google Scholar
  33. S. Morikawa, Y. Mabuchi, Y. Kubota et al., “Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow,” Journal of Experimental Medicine, vol. 206, no. 11, pp. 2483–2496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Nagoshi, S. Shibata, Y. Kubota et al., “Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad,” Cell Stem Cell, vol. 2, no. 4, pp. 392–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Morikawa, Y. Mabuchi, K. Niibe et al., “Development of mesenchymal stem cells partially originate from the neural crest,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 1114–1119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Takashima, T. Era, K. Nakao et al., “Neuroepithelial cells supply an initial transient wave of MSC differentiation,” Cell, vol. 129, no. 7, pp. 1377–1388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. S. Le Lievre and N. M. Le Douarin, “Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos,” Journal of Embryology and Experimental Morphology, vol. 34, no. 1, pp. 125–154, 1975. View at Google Scholar · View at Scopus
  38. S. J. Morrison, P. M. White, C. Zock, and D. J. Anderson, “Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells,” Cell, vol. 96, no. 5, pp. 737–749, 1999. View at Google Scholar · View at Scopus
  39. K. Niibe, Y. Kawamura, D. Araki et al., “Purified mesenchymal stem cells are an efficient source for iPS cell induction,” PLoS ONE, vol. 6, no. 3, Article ID e17610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Wang, J. Liu, X. Tan et al., “Induced pluripotent stem cells from human hair follicle mesenchymal stem cells,” Stem Cell Reviews. View at Publisher · View at Google Scholar
  41. U. Lendahl, L. B. Zimmerman, and R. D. G. McKay, “CNS stem cells express a new class of intermediate filament protein,” Cell, vol. 60, no. 4, pp. 585–595, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Méndez-Ferrer, T. V. Michurina, F. Ferraro et al., “Mesenchymal and haematopoietic stem cells form a unique bone marrow niche,” Nature, vol. 466, no. 7308, pp. 829–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Tronche, C. Kellendonk, O. Kretz et al., “Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety,” Nature Genetics, vol. 23, no. 1, pp. 99–103, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Mignone, V. Kukekov, A. S. Chiang, D. Steindler, and G. Enikolopov, “Neural stem and progenitor cells in Nestin-GFP transgenic mice,” Journal of Comparative Neurology, vol. 469, no. 3, pp. 311–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Ding, T. L. Saunders, G. Enikolopov, and S. J. Morrison, “Endothelial and perivascular cells maintain haematopoietic stem cells,” Nature, vol. 481, pp. 457–462, 2012. View at Google Scholar
  46. H. Aslan, Y. Zilberman, L. Kandel et al., “Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells,” Stem Cells, vol. 24, no. 7, pp. 1728–1737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Gronthos, A. C. W. Zannettino, S. J. Hay et al., “Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow,” Journal of Cell Science, vol. 116, no. 9, pp. 1827–1835, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. V. L. Battula, S. Treml, P. M. Bareiss et al., “Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1,” Haematologica, vol. 94, no. 2, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Simmons and B. Torok-Storb, “Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1,” Blood, vol. 78, no. 1, pp. 55–62, 1991. View at Google Scholar · View at Scopus
  50. E. J. Gang, D. Bosnakovski, C. A. Figueiredo, J. W. Visser, and R. C. R. Perlingeiro, “SSEA-4 identifies mesenchymal stem cells from bone marrow,” Blood, vol. 109, no. 4, pp. 1743–1751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Kim, J. W. Kang, J. H. Park et al., “Biological characterization of long-term cultured human mesenchymal stem cells,” Archives of Pharmacal Research, vol. 32, pp. 117–126, 2009. View at Publisher · View at Google Scholar
  52. T. J. Bartosh, J. H. Ylöstalo, A. Mohammadipoor et al., “Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13724–13729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Basciano, C. Nemos, B. Foliguet et al., “Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status,” BMC Cell Biology, vol. 12, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Jin, T. Kato, M. Furu et al., “Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase,” Biochemical and Biophysical Research Communications, vol. 391, no. 3, pp. 1471–1476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wang, Z. B. Han, Y. P. Song, and Z. C. Han, “Safety of mesenchymal stem cells for clinical application,” Stem Cells International, vol. 2012, Article ID 652034, 4 pages, 2012. View at Publisher · View at Google Scholar
  56. W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells,” Stem Cells Translational Medicine, vol. 1, pp. 44–50, 2012. View at Google Scholar
  57. B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity, vol. 25, no. 6, pp. 862–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Arai, A. Hirao, M. Ohmura et al., “Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche,” Cell, vol. 118, no. 2, pp. 149–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Xie, T. Yin, W. Wiegraebe et al., “Detection of functional haematopoietic stem cell niche using real-time imaging,” Nature, vol. 457, pp. 97–101, 2009. View at Publisher · View at Google Scholar
  62. A. Köhler, V. Schmithorst, M. D. Filippi et al., “Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones,” Blood, vol. 114, no. 2, pp. 290–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Lo Celso, H. E. Fleming, J. W. Wu et al., “Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche,” Nature, vol. 457, no. 7225, pp. 92–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Wilson and A. Trumpp, “Bone-marrow haematopoietic-stem-cell niches,” Nature Reviews Immunology, vol. 6, no. 2, pp. 93–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Yamazaki, H. Ema, G. Karlsson et al., “Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche,” Cell, vol. 147, pp. 1146–1158, 2011. View at Google Scholar