Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013 (2013), Article ID 659739, 11 pages
http://dx.doi.org/10.1155/2013/659739
Research Article

Distinct iPS Cells Show Different Cardiac Differentiation Efficiency

1Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
2Biomedical Research Laboratories, Asubio Pharma Co., Ltd., Kobe 650-0047, Japan

Received 5 June 2013; Revised 18 August 2013; Accepted 3 September 2013

Academic Editor: Ildiko Bock-Marquette

Copyright © 2013 Yohei Ohno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Google Scholar · View at Scopus
  2. J. A. Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  3. S. Yuasa, Y. Itabashi, U. Koshimizu et al., “Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells,” Nature Biotechnology, vol. 23, pp. 607–611, 2005. View at Google Scholar
  4. K. Shimoji, S. Yuasa, T. Onizuka et al., “G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs,” Cell Stem Cell, vol. 6, no. 3, pp. 227–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Onizuka, S. Yuasa, D. Kusumoto et al., “Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway,” Journal of Molecular and Cellular Cardiology, vol. 52, no. 3, pp. 650–659, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Kehat, L. Khimovich, O. Caspi et al., “Electromechanical integration of cardiomyocytes derived from human embryonic stem cells,” Nature Biotechnology, vol. 22, no. 10, pp. 1282–1289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Laflamme, K. Y. Chen, A. V. Naumova et al., “Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts,” Nature Biotechnology, vol. 25, no. 9, pp. 1015–1024, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yuasa and K. Fukuda, “Recent advances in cardiovascular regenerative medicine: the induced pluripotent stem cell era,” Expert Review of Cardiovascular Therapy, vol. 6, no. 6, pp. 803–810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by definedfactors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Seki, S. Yuasa, M. Oda et al., “Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells,” Cell Stem Cell, vol. 7, no. 1, pp. 11–14, 2010. View at Google Scholar · View at Scopus
  15. T. Seki, S. Yuasa, and K. Fukuda, “Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus,” Nature Protocols, vol. 7, pp. 718–728, 2012. View at Google Scholar
  16. T. Seki, S. Yuasa, and K. Fukuda, “Derivation of induced pluripotent stem cells from human peripheral circulating T cells,” in Current Protocols in Stem Cell Biology, chapter 4, Unit 4 A.3, John Wiley & Sons, 2011. View at Publisher · View at Google Scholar
  17. X.-Y. Zhao, W. Li, Z. Lv et al., “IPS cells produce viable mice through tetraploid complementation,” Nature, vol. 461, no. 7260, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Egashira, S. Yuasa, and K. Fukuda, “Induced pluripotent stem cells in cardiovascular medicine,” Stem Cells International, vol. 2011, Article ID 348960, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Yuasa, T. Onizuka, K. Shimoji et al., “Zac1 is an essential transcription factor for cardiac morphogenesis,” Circulation Research, vol. 106, no. 6, pp. 1083–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Hotta and J. Ellis, “Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states,” Journal of Cellular Biochemistry, vol. 105, no. 4, pp. 940–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kaichi, K. Hasegawa, T. Takaya et al., “Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice,” Cardiovascular Research, vol. 88, no. 2, pp. 314–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Hattori, H. Chen, H. Yamashita et al., “Nongenetic method for purifying stem cell-derived cardiomyocytes,” Nature Methods, vol. 7, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Chen, F. Hattori, M. Murata et al., “Common marmoset embryonic stem cell can differentiate into cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 369, no. 3, pp. 801–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Tanaka, S. Tohyama, M. Murata et al., “In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 497–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Zhou and C. R. Freed, “Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells,” Stem Cells, vol. 27, no. 11, pp. 2667–2674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, “Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome,” Proceedings of the Japan Academy Series B, vol. 85, no. 8, pp. 348–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Aoi, K. Yae, M. Nakagawa et al., “Generation of pluripotent stem cells from adult mouse liver and stomach cells,” Science, vol. 321, no. 5889, pp. 699–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Sun, N. J. Panetta, D. M. Gupta et al., “Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15720–15725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. B. Kim, B. Greber, M. J. Arazo-Bravo et al., “Direct reprogramming of human neural stem cells by OCT4,” Nature, vol. 461, no. 7264, pp. 649–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Eminli, A. Foudi, M. Stadtfeld et al., “Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells,” Nature Genetics, vol. 41, no. 9, pp. 968–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Ye, H. Zhan, P. Mali et al., “Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders,” Blood, vol. 114, no. 27, pp. 5473–5480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Xi, M. Khalil, N. Shishechian et al., “Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells,” The FASEB Journal, vol. 24, no. 8, pp. 2739–2751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kuzmenkin, H. Liang, G. Xu et al., “Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro,” The FASEB Journal, vol. 23, no. 12, pp. 4168–4180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Okada and Y. Yoneda, “The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines,” Biochimica et Biophysica Acta, vol. 1810, no. 2, pp. 226–235, 2011. View at Publisher · View at Google Scholar · View at Scopus