Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 892340, 10 pages
http://dx.doi.org/10.1155/2013/892340
Review Article

The Necessity of a Systematic Approach for the Use of MSCs in the Clinical Setting

1Qatar Cardiovascular Research Center, Qatar Foundation, Qatar Science and Technology Park, Doha, Qatar
2Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
3Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar

Received 21 April 2013; Revised 26 May 2013; Accepted 5 June 2013

Academic Editor: Mohan Vemuri

Copyright © 2013 Christophe Michel Raynaud and Arash Rafii. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar
  3. I. Gutierrez-Aranda, V. Ramos-Mejia, C. Bueno et al., “Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection,” Stem Cells, vol. 28, no. 9, pp. 1568–1570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Fink Jr., “FDA regulation of stem cell-based products,” Science, vol. 324, no. 5935, pp. 1662–1663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Google Scholar · View at Scopus
  6. T. M. Dexter, T. D. Allen, and L. G. Lajtha, “Conditions controlling the proliferation of haemopoietic stem cells in vitro,” Journal of Cellular Physiology, vol. 91, no. 3, pp. 335–344, 1977. View at Google Scholar · View at Scopus
  7. H. Castro-Malaspina, R. E. Gay, and G. Resnick, “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny,” Blood, vol. 56, no. 2, pp. 289–301, 1980. View at Google Scholar · View at Scopus
  8. B. R. Clark and A. Keating, “Biology of bone marrow stroma,” Annals of the New York Academy of Sciences, vol. 770, pp. 70–78, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Google Scholar
  10. U. Riekstina, R. Muceniece, I. Cakstina, I. Muiznieks, and J. Ancans, “Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions,” Cytotechnology, vol. 58, no. 3, pp. 153–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. T. Hsiao, A. Asgari, Z. Lokmic et al., “Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue,” Stem Cells and Development, vol. 21, no. 12, pp. 2189–2203, 2012. View at Publisher · View at Google Scholar
  12. J. Lyahyai, D. R. Mediano, B. Ranera et al., “Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood,” BMC Veterinary Research, vol. 8, p. 169, 2012. View at Google Scholar
  13. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Peng and J. Huard, “Muscle-derived stem cells for musculoskeletal tissue regeneration and repair,” Transplant Immunology, vol. 12, no. 3-4, pp. 311–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui, “Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks,” Biotechnology Journal, vol. 4, no. 8, pp. 1198–1209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. S. In't Anker, S. A. Scherjon, C. Kleijburg-Van Der Keur et al., “Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta,” Stem Cells, vol. 22, no. 7, pp. 1338–1345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Raynaud, M. Maleki, R. Lis et al., “Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation,” Stem Cells International, vol. 2012, Article ID 658356, 13 pages, 2012. View at Publisher · View at Google Scholar
  18. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Bernardo, A. M. Cometa, D. Pagliara et al., “Ex vivo expansion of mesenchymal stromal cells,” Best Practice & Research Clinical Haematology, vol. 24, no. 1, pp. 73–81, 2011. View at Google Scholar
  22. P. Mafi, S. Hindocha, R. Mafi, M. Griffin, and W. S. Khan, “Adult mesenchymal stem cells and cell surface characterization—a systematic review of the literature,” The Open Orthopaedics Journal, vol. 5, supplement 2, pp. 253–260, 2011. View at Publisher · View at Google Scholar
  23. H. Ning, G. Lin, T. F. Lue, and C.-S. Lin, “Mesenchymal stem cell marker Stro-1 is a 75kd endothelial antigen,” Biochemical and Biophysical Research Communications, vol. 413, no. 2, pp. 353–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Tanaka-Douzono, S. Suzu, M. Yamada et al., “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, no. 1, pp. 54–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. I. Lee, J. E. Christensen, M. C. Yoder, and A. F. Tarantal, “Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells,” Experimental Hematology, vol. 38, no. 1, pp. 46–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000. View at Google Scholar · View at Scopus
  27. P. Hematti, “Mesenchymal stromal cells and fibroblasts: a case of mistaken identity?” Cytotherapy, vol. 14, no. 5, pp. 516–521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. L. Lindsay, S. A. Johnstone, J. C. Mountford et al., “Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro,” Glia, vol. 61, no. 3, pp. 368–382, 2013. View at Google Scholar
  29. A. A. Ramkisoensing, D. A. Pijnappels, S. F. A. Askar et al., “Human embryonic and fetal Mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts,” PLoS ONE, vol. 6, no. 9, Article ID e24164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. J. Adegani, L. Langroudi, E. Arefian, A. Shafiee, P. Dinarvand, and M. Soleimani, “A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells,” Molecular Biology Reports, vol. 40, no. 5, pp. 3693–3703, 2013. View at Publisher · View at Google Scholar
  31. R. I. Dmitrieva, R. Minullina, A. A. Bilibina, O. V. Tarasova, S. V. Anisimov, and A. Y. Zaritskey, “Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities,” Cell Cycle, vol. 11, no. 2, pp. 377–383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Balasubramanian, P. Venugopal, S. Sundarraj, Z. Zakaria, A. S. Majumdar, and M. Ta, “Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells,” Cytotherapy, vol. 14, no. 1, pp. 26–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Hass, C. Kasper, S. Bohm, and R. Jacobs, “Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC,” Cell Communication and Signaling, p. 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Manini, L. Gulino, B. Gava et al., “Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue,” Cell and Tissue Research, vol. 344, no. 1, pp. 85–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ikegame, K. Yamashita, S.-I. Hayashi et al., “Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy,” Cytotherapy, vol. 13, no. 6, pp. 675–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Strioga, S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek, “Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells,” Stem Cells and Development, vol. 21, no. 14, pp. 2724–2752, 2012. View at Google Scholar
  37. R. B. Jakobsen, A. Shahdadfar, F. P. Reinholt, and J. E. Brinchmann, “Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 10, pp. 1407–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Yannarelli, N. Pacienza, L. Cuniberti, J. Medin, J. Davies, and A. Keating, “Brief report: the potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells,” Stem Cells, vol. 31, no. 1, pp. 215–220, 2013. View at Google Scholar
  39. C. M. Teven, X. Liu, N. Hu et al., “Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation,” Stem Cells International, vol. 2011, Article ID 201371, 18 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringdén, “Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex,” Scandinavian Journal of Immunology, vol. 57, no. 1, pp. 11–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. P. A. Muraro and A. Uccelli, “Immuno-therapeutic potential of haematopoietic and mesenchymal stem cell transplantation in MS,” Results and Problems in Cell Differentiation, vol. 51, pp. 237–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Tolar, K. Le Blanc, A. Keating, and B. R. Blazar, “Concise review: hitting the right spot with mesenchymal stromal cells,” Stem Cells, vol. 28, no. 8, pp. 1446–1455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K. English, A. French, and K. J. Wood, “Mesenchymal stromal cells: facilitators of successful transplantation?” Cell Stem Cell, vol. 7, no. 4, pp. 431–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Yi and S. U. Song, “Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications,” Archives of Pharmacal Research, vol. 35, no. 2, pp. 213–221, 2012. View at Google Scholar
  46. E. Soleymaninejadian, K. Pramanik, and E. Samadian, “Immunomodulatory properties of mesenchymal stem cells: cytokines and factors,” American Journal of Reproductive Immunology, vol. 67, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. P.-M. Chen, M.-L. Yen, K.-J. Liu, H.-K. Sytwu, and B.-L. Yen, “Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells,” Journal of Biomedical Science, vol. 18, no. 1, article 49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. B. R. Weil, M. C. Manukyan, J. L. Herrmann et al., “The immunomodulatory properties of mesenchymal stem cells: implications for surgical disease,” Journal of Surgical Research, vol. 167, no. 1, pp. 78–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. J. Hoogduijn, F. Popp, R. Verbeek et al., “The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy,” International Immunopharmacology, vol. 10, no. 12, pp. 1496–1500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Abdi, P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh, “Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes,” Diabetes, vol. 57, no. 7, pp. 1759–1767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. S. Iyer and M. Rojas, “Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies,” Expert Opinion on Biological Therapy, vol. 8, no. 5, pp. 569–581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. H. Jung, S. U. Song, T. Yi et al., “Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats,” Gastroenterology, vol. 140, no. 3, pp. 998–1008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. Spaggiari, H. Abdelrazik, F. Becchetti, and L. Moretta, “MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2,” Blood, vol. 113, no. 26, pp. 6576–6583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. G. M. Spaggiari, A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Ren, L. Zhang, X. Zhao et al., “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Liotta, R. Angeli, L. Cosmi et al., “Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling,” Stem Cells, vol. 26, no. 1, pp. 279–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. S. L. Tomchuck, K. J. Zwezdaryk, S. B. Coffelt, R. S. Waterman, E. S. Danka, and A. B. Scandurro, “Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses,” Stem Cells, vol. 26, no. 1, pp. 99–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. S. Waterman, S. L. Tomchuck, S. L. Henkle, and A. M. Betancourt, “A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype,” PLoS ONE, vol. 5, no. 4, Article ID e10088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Duijvestein, A. C. W. Vos, H. Roelofs et al., “Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study,” Gut, vol. 59, no. 12, pp. 1662–1669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Taléns-Visconti, A. Bonora, R. Jover et al., “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 12, no. 36, pp. 5834–5845, 2006. View at Google Scholar · View at Scopus
  61. S. Carrancio, C. Romo, T. Ramos et al., “Effects of MSC-co-administration and route of delivery on cord blood hematopoietic stem cell engraftment,” Cell Transplant, 2012. View at Publisher · View at Google Scholar
  62. A. Hofmann, U. Ritz, M. H. Hessmann et al., “Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions,” Bone, vol. 42, no. 5, pp. 894–906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Amemori, P. Jendelová, K. Růžičková, D. Arboleda, and E. Syková, “Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat,” Cytotherapy, vol. 12, no. 2, pp. 212–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. L. Rackham, P. C. Chagastelles, N. B. Nardi, A. C. Hauge-Evans, P. M. Jones, and A. J. King, “Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice,” Cytotherapy, vol. 15, no. 2, pp. 192–200, 2011. View at Google Scholar
  65. F. S. Loffredo, M. L. Steinhauser, J. Gannon, and R. T. Lee, “Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair,” Cell Stem Cell, vol. 8, no. 4, pp. 389–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Kebriaei, L. Isola, E. Bahceci et al., “Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease,” Biology of Blood and Marrow Transplantation, vol. 15, no. 7, pp. 804–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. O. Ringdén, M. Uzunel, I. Rasmusson et al., “Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease,” Transplantation, vol. 81, no. 10, pp. 1390–1397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Rafei, P. M. Campeau, A. Aguilar-Mahecha et al., “Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner,” Journal of Immunology, vol. 182, no. 10, pp. 5994–6002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Constantin, S. Marconi, B. Rossi et al., “Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis,” Stem Cells, vol. 27, no. 10, pp. 2624–2635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Yamout, R. Hourani, H. Salti et al., “Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study,” Journal of Neuroimmunology, vol. 227, no. 1-2, pp. 185–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. B. G. Jaganathan, V. Tisato, T. Vulliamy et al., “Effects of MSC co-injection on the reconstitution of aplastic anemia patient following hematopoietic stem cell transplantation,” Leukemia, vol. 24, no. 10, pp. 1791–1795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Joshi, B. Patil P, Z. He, J. Holgersson, M. Olausson, and S. Sumitran-Holgersson, “Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes,” Cytotherapy, vol. 14, no. 6, pp. 657–669, 2012. View at Google Scholar
  75. A. V. Vanikar, S. D. Dave, U. G. Thakkar, and H. L. Trivedi, “Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus,” Stem Cells International, vol. 2010, Article ID 582382, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Müller, S. Kordowich, C. Holzwarth et al., “Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation,” Blood Cells, Molecules, and Diseases, vol. 40, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. T. Lee, J. H. Jang, J.-W. Cheong et al., “Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype,” British Journal of Haematology, vol. 118, no. 4, pp. 1128–1131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. L. M. Ball, M. E. Bernardo, H. Roelofs et al., “Cotransplantation of ex vivo-expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation,” Blood, vol. 110, no. 7, pp. 2764–2767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Seebach, D. Henrich, R. Tewksbury, K. Wilhelm, and I. Marzi, “Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions,” Calcified Tissue International, vol. 80, no. 4, pp. 294–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Marcacci, E. Kon, V. Moukhachev et al., “Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study,” Tissue Engineering, vol. 13, no. 5, pp. 947–955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” The New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Cancedda, B. Dozin, P. Giannoni, and R. Quarto, “Tissue engineering and cell therapy of cartilage and bone,” Matrix Biology, vol. 22, no. 1, pp. 81–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Kon, A. Muraglia, A. Corsi et al., “Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones,” Journal of Biomedical Materials Research, vol. 49, no. 3, pp. 328–337, 2000. View at Google Scholar
  84. G. Pachón-Peña, G. Yu, A. Tucker et al., “Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles,” Journal of Cellular Physiology, vol. 226, no. 3, pp. 843–851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Shafiee, E. Seyedjafari, M. Soleimani, N. Ahmadbeigi, P. Dinarvand, and N. Ghaemi, “A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue,” Biotechnology Letters, vol. 33, no. 6, pp. 1257–1264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Scotti, B. Tonnarelli, A. Papadimitropoulos et al., “Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7251–7256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Fan, Y. Hu, C. Zhang et al., “Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold,” Biomaterials, vol. 27, no. 26, pp. 4573–4580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. L. Zheng, J. Sun, X. Chen et al., “In vivo cartilage engineering with collagen hydrogel and allogenous chondrocytes after diffusion chamber implantation in immunocompetent host,” Tissue Engineering Part A, vol. 15, no. 8, pp. 2145–2153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Agung, M. Ochi, S. Yanada et al., “Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, no. 12, pp. 1307–1314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Horie, I. Sekiya, T. Muneta et al., “Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect,” Stem Cells, vol. 27, no. 4, pp. 878–887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. M. Murphy, D. J. Fink, E. B. Hunziker, and F. P. Barry, “Stem cell therapy in a caprine model of osteoarthritis,” Arthritis and Rheumatism, vol. 48, no. 12, pp. 3464–3474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. D. D. Frisbie, J. D. Kisiday, C. E. Kawcak, N. M. Werpy, and C. W. McIlwraith, “Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis,” Journal of Orthopaedic Research, vol. 27, no. 12, pp. 1675–1680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda, “Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 199–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman, and D. Karli, “Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells,” Pain Physician, vol. 11, no. 3, pp. 343–353, 2008. View at Google Scholar · View at Scopus
  95. F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients,” International Journal of Rheumatic Diseases, vol. 14, no. 2, pp. 211–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. U. Nöth, A. F. Steinert, and R. S. Tuan, “Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy,” Nature Clinical Practice Rheumatology, vol. 4, no. 7, pp. 371–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Johnson, S. Zhu, M. S. Tremblay et al., “A stem cell-based approach to cartilage repair,” Science, vol. 336, no. 6082, pp. 717–721, 2012. View at Google Scholar
  98. Y. Qi, G. Feng, and W. Yan, “Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis,” Molecular Biology Reports, vol. 39, no. 5, pp. 5683–5689, 2012. View at Google Scholar
  99. M. R. Alison, R. Poulsom, R. Jeffery et al., “Hepatocytes from non-hepatic adult stem cells,” Nature, vol. 406, no. 6793, p. 257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Kanazawa, Y. Fujimoto, T. Teratani et al., “Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model,” PLoS ONE, vol. 6, no. 4, Article ID e19195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Banas, T. Teratani, Y. Yamamoto et al., “Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 70–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Parekkadan, D. Van Poll, K. Suganuma et al., “Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure,” PLoS ONE, vol. 2, no. 9, article e941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Mohamadnejad, M. Namiri, M. Bagheri et al., “Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3359–3363, 2007. View at Google Scholar · View at Scopus
  104. C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler, “Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart,” Circulation, vol. 105, no. 1, pp. 93–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. X. Li, X. Yu, Q. Lin et al., “Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 2, pp. 295–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Wang, Z. Xu, W. Jiang, and A. Ma, “Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell,” International Journal of Cardiology, vol. 109, no. 1, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999. View at Google Scholar · View at Scopus
  108. M. Xu, M. Wani, Y.-S. Dai et al., “Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes,” Circulation, vol. 110, no. 17, pp. 2658–2665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Hamamoto, J. H. Gorman III, L. P. Ryan et al., “Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage,” Annals of Thoracic Surgery, vol. 87, no. 3, pp. 794–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. K. H. Schuleri, G. S. Feigenbaum, M. Centola et al., “Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy,” European Heart Journal, vol. 30, no. 22, pp. 2722–2732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. A. Dixon, R. C. Gorman, R. E. Stroud et al., “Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction,” Circulation, vol. 120, no. 1, pp. S220–S229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Trachtenberg, D. L. Velazquez, A. R. Williams et al., “Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy,” American Heart Journal, vol. 161, no. 3, pp. 487–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. R. Williams, B. Trachtenberg, D. L. Velazquez et al., “Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling,” Circulation Research, vol. 108, no. 7, pp. 792–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Kinnaird, E. S. Burnett, M. Shou et al., “Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms,” Circulation, vol. 109, no. 12, pp. 1543–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. S. H. Ranganath, O. Levy, M. S. Inamdar, and J. M. Karp, “Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease,” Cell Stem Cell, vol. 10, no. 3, pp. 244–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Nakamura-Ishizu and T. Suda, “Hematopoietic stem cell niche: an interplay among a repertoire of multiple functional niches,” Biochimica et Biophysica Acta, vol. 1830, no. 2, pp. 2404–2409, 2013. View at Publisher · View at Google Scholar
  120. F. Nwajei and M. Konopleva, “The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells,” Advances in Hematology, vol. 2013, Article ID 953982, 8 pages, 2013. View at Publisher · View at Google Scholar
  121. H. Yagi, B. Parekkadan, K. Suganuma et al., “Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure,” Tissue Engineering Part A, vol. 15, no. 11, pp. 3377–3388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Gnecchi, H. He, N. Noiseux et al., “Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement,” FASEB Journal, vol. 20, no. 6, pp. 661–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, “Paracrine mechanisms in adult stem cell signaling and therapy,” Circulation Research, vol. 103, no. 11, pp. 1204–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Gnecchi, H. He, O. D. Liang et al., “Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells,” Nature Medicine, vol. 11, no. 4, pp. 367–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. S. A. Glynn, M. P. Busch, R. Y. Dodd et al., “Emerging infectious agents and the nation's blood supply: responding to potential threats in the 21st century,” Transfusion, vol. 53, no. 2, pp. 438–454, 2013. View at Google Scholar
  128. M. Bláha, P. Mericka, V. Stepánová et al., “Prevention of infection transmission during stem cell transplantation,” Folia Microbiologica, vol. 51, no. 6, pp. 609–613, 2006. View at Google Scholar
  129. Y. Mishima and M. Lotz, “Chemotaxis of human articular chondrocytes and mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 26, no. 10, pp. 1407–1412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. J. A. Wood, D. J. Chung, S. A. Park et al., “Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study,” Journal of Ocular Pharmacology and Therapeutics, vol. 28, no. 3, pp. 307–317, 2012. View at Google Scholar
  131. P. Perrot, D. Heymann, C. Charrier, S. Couillaud, F. Rédini, and F. Duteille, “Extraosseous bone formation obtained by association of mesenchymal stem cells with a periosteal flap in the rat,” Annals of Plastic Surgery, vol. 59, no. 2, pp. 201–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. K. Pelttari, A. Winter, E. Steck et al., “Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice,” Arthritis and Rheumatism, vol. 54, no. 10, pp. 3254–3266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Breitbach, T. Bostani, W. Roell et al., “Potential risks of bone marrow cell transplantation into infarcted hearts,” Blood, vol. 110, no. 4, pp. 1362–1369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. R. Lis, C. Touboul, P. Mirshahi et al., “Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12,” International Journal of Cancer, vol. 128, no. 3, pp. 715–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Lis, C. Touboul, C. M. Raynaud et al., “Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties,” PLoS ONE, vol. 7, no. 5, Article ID e38340, 2012. View at Google Scholar
  136. L. Sensebé, K. Tarte, J. Galipeau et al., “Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells,” Cell Stem Cell, vol. 10, no. 1, pp. 9–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. U. Ben-David, Y. Mayshar, and N. Benvenisty, “Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells,” Cell Stem Cell, vol. 9, no. 2, pp. 97–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. R. Tasso, A. Augello, M. Carida' et al., “Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds,” Carcinogenesis, vol. 30, no. 1, pp. 150–157, 2009. View at Publisher · View at Google Scholar · View at Scopus