Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2014, Article ID 162024, 11 pages
http://dx.doi.org/10.1155/2014/162024
Research Article

A Cocktail Method for Promoting Cardiomyocyte Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells

Key Laboratory of Pathology of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China

Received 10 January 2014; Revised 26 March 2014; Accepted 16 April 2014; Published 23 June 2014

Academic Editor: Pranela Rameshwar

Copyright © 2014 Qing Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999. View at Google Scholar · View at Scopus
  2. K. Fukuda and S. Yuasa, “Stem cells as a source of regenerative cardiomyocytes,” Circulation Research, vol. 98, no. 8, pp. 1002–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Wang, Z. Xu, W. Jiang, and A. Ma, “Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell,” International Journal of Cardiology, vol. 109, no. 1, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. X. N. Liu, Q. Yin, H. Zhang et al., “Tissue extracts from infarcted myocardium of rats in promoting the differentiation of bone marrow stromal cells into cardiomyocyte-like cells,” Biomedical and Environmental Sciences, vol. 21, no. 2, pp. 110–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Xing, A. Lv, L. Wang, and X. Yan, “The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells,” Molecular and Cellular Biochemistry, vol. 360, no. 1-2, pp. 279–287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kanno, P. K. M. Kim, K. Sallam, J. Lei, T. R. Billiar, and L. L. Shears II, “Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12277–12281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. K. Rebelatto, A. M. Aguiar, A. C. Senegaglia et al., “Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents,” Biochemical and Biophysical Research Communications, vol. 378, no. 3, pp. 456–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Xu, X. Zhang, H. Qian et al., “Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro,” Experimental Biology and Medicine, vol. 229, no. 7, pp. 623–631, 2004. View at Google Scholar · View at Scopus
  9. D. H. Kim, S. J. Park, J. M. Kim et al., “Cognitive dysfunctions induced by a cholinergic blockade and Aβ 25-35 peptide are attenuated by salvianolic acid B,” Neuropharmacology, vol. 61, no. 8, pp. 1432–1440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Isacchi, V. Fabbri, N. Galeotti et al., “Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain,” European Journal of Pharmaceutical Sciences, vol. 44, no. 4, pp. 552–558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Chen, W. Liu, X. Chao et al., “Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice,” Brain Research Bulletin, vol. 84, no. 2, pp. 163–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Xu, Y. Deng, L. Feng et al., “Cardio-protection of salvianolic acid b through inhibition of apoptosis network,” PLoS ONE, vol. 6, no. 9, Article ID e24036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. V. Schittini, P. F. Celedon, M. A. Stimamiglio et al., “Human cardiac explant-conditioned medium: Soluble factors and cardiomyogenic effect on mesenchymal stem cells,” Experimental Biology and Medicine, vol. 235, no. 8, pp. 1015–1024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Brade, J. Männer, and M. Kühl, “The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart,” Cardiovascular Research, vol. 72, no. 2, pp. 198–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Korkaya, A. Paulson, E. Charafe-Jauffret et al., “Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling,” PLoS Biology, vol. 7, no. 6, Article ID e1000121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. T. Staal Frank and J. M. Sen, “The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis,” European Journal of Immunology, vol. 38, no. 7, pp. 1788–1794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Pu, Z. Zhang, C. Kang et al., “Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth,” Cancer Gene Therapy, vol. 16, no. 4, pp. 351–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. T. Naito, I. Shiojima, H. Akazawa et al., “Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 52, pp. 19812–19817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. D. Cohen, Y. Tian, and E. E. Morrisey, “Wnt signaling: An essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal,” Development, vol. 135, no. 5, pp. 789–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Bergmann, “WNT signaling in adult cardiac hypertrophy and remodeling: Lessons learned from cardiac development,” Circulation Research, vol. 107, no. 10, pp. 1198–1208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Cho, P. Rameshwar, and J. Sadoshima, “Distinct roles of glycogen synthase kinase (GSK)-3α and GSK-3β in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells,” Journal of Biological Chemistry, vol. 284, no. 52, pp. 36647–36658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Wakitani, T. Saito, and A. I. Caplan, “Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine,” Muscle and Nerve, vol. 18, no. 12, pp. 1417–1426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Wei, T. Wang, J. Liu, Y. Du, and A. Ma, “The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells,” Experimental Cell Research, vol. 317, no. 18, pp. 2661–2670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Dell'Ovo, E. Bandi, T. Coslovich et al., “In vitro effects of yessotoxin on a primary culture of rat cardiomyocytes,” Toxicological Sciences, vol. 106, no. 2, pp. 392–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. F. B. Zhang, L. Li, B. Fang, D. L. Zhu, H. T. Yang, and P. J. Gao, “Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells,” Biochemical and Biophysical Research Communications, vol. 336, no. 3, pp. 784–792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, J. Song, W. Liu, Y. Wan, X. Chen, and C. Hu, “Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation?” Cardiovascular Research, vol. 58, no. 2, pp. 460–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Pan, L. Lou, Y. Huo et al., “Salvianolic acid B and Tanshinone IIA attenuate myocardial ischemia injury in mice by no production through multiple pathways,” Therapeutic Advances in Cardiovascular Disease, vol. 5, no. 2, pp. 99–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Zhou, Z. Zuo, and M. S. S. Chow, “Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use,” Journal of Clinical Pharmacology, vol. 45, no. 12, pp. 1345–1359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Cho, P. Zhai, Y. Maejima, and J. Sadoshima, “Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction,” Circulation Research, vol. 108, no. 4, pp. 478–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mirotsou, Z. Zhang, A. Deb et al., “Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1643–1648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. P. Alfaro, M. Pagnia, A. Vincent et al., “The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18366–18371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Willems, S. Spiering, H. Davidovics et al., “Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm,” Circulation Research, vol. 109, no. 4, pp. 360–364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Egea, S. Zahler, N. Rieth et al., “Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 6, pp. 309–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Li, B. Yu, Y. Zhang, Z. Pan, W. Xu, and H. Li, “Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 320–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. He, H. Li, S. Zuo et al., “Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes,” Stem Cells and Development, vol. 20, no. 10, pp. 1771–1778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Li, S. Zuo, Z. Pasha et al., “GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4,” Cytotherapy, vol. 13, no. 9, pp. 1057–1065, 2011. View at Publisher · View at Google Scholar · View at Scopus