Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2014 (2014), Article ID 249309, 8 pages
http://dx.doi.org/10.1155/2014/249309
Research Article

A Proposed Quantitative Index for Assessing the Potential Contribution of Reprogramming to Cancer Stem Cell Kinetics

Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University School of Medicine, 736 Cambridge Street, SEMC-CBR1, Boston, MA 02135, USA

Received 22 January 2014; Revised 17 April 2014; Accepted 17 April 2014; Published 12 May 2014

Academic Editor: Gary E. Lyons

Copyright © 2014 Xuefeng Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Zhang, T. Song, L. Yang et al., “Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients,” Journal of Experimental and Clinical Cancer Research, vol. 27, no. 1, article 85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Pallini, L. Ricci-Vitiani, G. L. Banna et al., “Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme,” Clinical Cancer Research, vol. 14, no. 24, pp. 8205–8212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kappadakunnel, A. Eskin, J. Dong et al., “Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone,” Journal of Neuro-Oncology, vol. 96, no. 3, pp. 359–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Hambardzumyan, O. J. Becher, M. K. Rosenblum, P. P. Pandolfi, K. Manova-Todorova, and E. C. Holland, “PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo,” Genes and Development, vol. 22, no. 4, pp. 436–448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. K. Kang, B. I. Hur, M. H. Ko, C. H. Kim, S. H. Cha, and S. K. Kang, “Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma,” BMC neuroscience, vol. 9, p. 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Tamura, M. Aoyagi, H. Wakimoto et al., “Accumulation of CD133-positive glioma cells after high-dose irradiation by gamma knife surgery plus external beam radiation: clinical article,” Journal of Neurosurgery, vol. 113, no. 2, pp. 310–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-J. Kim, R.-K. Kim, C.-H. Yoon et al., “Importance of PKCδ signaling in fractionatedradiation-induced expansion of glioma-initiating cells and resistance to cancer treatment,” Journal of Cell Science, vol. 124, no. 18, pp. 3084–3094, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Pajonk, E. Vlashi, and W. H. McBride, “Radiation resistance of cancer stem cells: the 4 R's of radiobiology revisited,” Stem Cells, vol. 28, no. 4, pp. 639–648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Dörr, “Three A's of repopulation during fractionated irradiation of squamous epithelia: asymmetry loss, Acceleration of stem-cell divisions and Abortive divisions,” International Journal of Radiation Biology, vol. 72, no. 6, pp. 635–643, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. T. M. Phillips, W. H. McBride, and F. Pajonk, “The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation,” Journal of the National Cancer Institute, vol. 98, no. 24, pp. 1777–1785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Gao, J. T. McDonald, L. Hlatky, and H. Enderling, “Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics,” Cancer Research, vol. 73, pp. 1481–1490, 2013. View at Publisher · View at Google Scholar
  13. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Friedmann-Morvinski, E. A. Bushong, E. Ke et al., “Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice,” Science, vol. 338, pp. 1080–1084, 2012. View at Google Scholar
  15. C. Dai, J. C. Celestino, Y. Okada, D. N. Louis, G. N. Fuller, and E. C. Holland, “PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas from and oligoastrocytomas neural progenitors and astrocytes in vivo,” Genes and Development, vol. 15, no. 15, pp. 1913–1925, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Kang, J. B. Park, and S. H. Cha, “Multipotent, dedifferentiated cancer stem-like cells from brain gliomas,” Stem Cells and Development, vol. 15, no. 3, pp. 423–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-H. Moon, S. Kwon, E. K. Jun et al., “Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells,” Biochemical and Biophysical Research Communications, vol. 412, no. 1, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. D. Marjanovic, R. A. Weinberg, and C. L. Chaffer, “Cell plasticity and heterogeneity in cancer.,” Clinical Chemistry, vol. 59, pp. 168–179, 2013. View at Google Scholar
  19. J. Wang, P. Ø. Sakariassen, O. Tsinkalovsky et al., “CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells,” International Journal of Cancer, vol. 122, no. 4, pp. 761–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kondo and M. Raff, “Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells,” Science, vol. 289, no. 5485, pp. 1754–1757, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Ghisolfi, A. C. Keates, X. Hu, D.-K. Lee, and C. J. Li, “Ionizing radiation induces stemness in cancer cells,” PLoS ONE, vol. 7, Article ID e43628, 2012. View at Google Scholar
  22. C. Lagadec, E. Vlashi, L. Della Donna, C. Dekmezian, and F. Pajonk, “Radiation-induced reprogramming of breast cancer cells,” Stem Cells, vol. 30, no. 5, pp. 833–844, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Hayflick, “The limited in vitro lifetime of human diploid cell strains,” Experimental Cell Research, vol. 37, no. 3, pp. 614–636, 1965. View at Google Scholar · View at Scopus
  24. J. W. Shay and W. E. Wright, “Role of telomeres and telomerase in cancer,” Seminars in Cancer Biology, vol. 21, no. 6, pp. 349–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Clayton, D. P. Doupé, A. M. Klein, D. J. Winton, B. D. Simons, and P. H. Jones, “A single type of progenitor cell maintains normal epidermis,” Nature, vol. 446, no. 7132, pp. 185–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. McCord, M. Jamal, E. S. Williams, K. Camphausen, and P. J. Tofilon, “CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines,” Clinical Cancer Research, vol. 15, no. 16, pp. 5145–5153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Brenner, L. R. Hlatky, P. J. Hahnfeldt, E. J. Hall, and R. K. Sachs, “A convenient extension of the linear-quadratic model to include redistribution and reoxygenation,” International Journal of Radiation Oncology Biology Physics, vol. 32, no. 2, pp. 379–390, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Gao, J. T. McDonald, L. Hlatky, and H. Enderling, “Cell-cell interactions in solid tumors—the role of cancer stem cells,” in New Challenges for Cancer Systems Biomedicine, pp. 191–204, Springer, Milan, Italy, 2012. View at Google Scholar
  29. T. Hillen, H. Enderling, and P. Hahnfeldt, “The tumor growth paradox and immune system-mediated selection for cancer stem cells,” Bulletin of Mathematical Biology, vol. 75, pp. 161–184, 2012. View at Google Scholar
  30. H. Enderling, L. Hlatky, and P. Hahnfeldt, “Migration rules: tumours are conglomerates of self-metastases,” British Journal of Cancer, vol. 100, no. 12, pp. 1917–1925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. L. Sawyers, “Molecular consequences of the BCR-ABL translocation in chronic myelogenous leukemia,” Leukemia and Lymphoma, vol. 11, no. 2, pp. 101–103, 1993. View at Google Scholar · View at Scopus
  32. M. D. Naidu, J. M. Mason, R. V. Pica, F. Hua, and L. A. Peña, “Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1,” Journal of Radiation Research, vol. 51, no. 4, pp. 393–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. J. Hall and A. J. Giaccia, Radiobiology For the Radiologist, vol. 6, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2006.
  34. C. S. Potten, “The cell kinetic mechanism for radiation-induced cellular depletion of epithelial tissue based on hierarchical differences in radiosensitivity,” International Journal of Radiation Biology, vol. 40, no. 2, pp. 217–225, 1981. View at Google Scholar · View at Scopus
  35. B. M. Boman, M. S. Wicha, J. Z. Fields, and O. A. Runquist, “Symmetric division of cancer stem cells—a key mechanism in tumor growth that should be targeted in future therapeutic approaches,” Clinical Pharmacology and Therapeutics, vol. 81, no. 6, pp. 893–898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. B. Gupta, C. M. Fillmore, G. Jiang et al., “Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 146, pp. 633–644, 2011. View at Google Scholar
  37. G. Yang, Y. Quan, W. Wang et al., “Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations,” British Journal of Cancer, vol. 106, no. 9, pp. 1512–1519, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Hölzel, A. Bovier, and T. Tüting, “Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance?” Nature Reviews Cancer, vol. 13, pp. 365–376, 2013. View at Google Scholar
  39. T. Hoshino and C. B. Wilson, “Cell kinetic analyses of human malignant brain tumors (gliomas),” Cancer, vol. 44, no. 3, pp. 956–962, 1979. View at Google Scholar · View at Scopus
  40. L. E. Dillehay, “A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division,” Radiation Research, vol. 124, no. 2, pp. 201–207, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. R. G. W. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Magee, E. Piskounova, and S. J. Morrison, “Cancer stem cells: impact, heterogeneity, and uncertainty,” Cancer Cell, vol. 21, no. 3, pp. 283–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Soda, T. Marumoto, D. Friedmann-Morvinski et al., “Transdifferentiation of glioblastoma cells into vascular endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4274–4280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Hardee, A. E. Marciscano, C. M. Medina-Ramirez et al., “Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor,” Cancer Research, vol. 72, pp. 4119–4129, 2012. View at Google Scholar
  45. H. Harrison, L. Rogerson, H. J. Gregson, K. R. Brennan, R. B. Clarke, and G. Landberg, “Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER status,” Cancer Research, vol. 73, pp. 1420–1433, 2012. View at Google Scholar
  46. J. Mathieu, Z. Zhang, W. Zhou et al., “HIF induces human embryonic stem cell markers in cancer cells,” Cancer Research, vol. 71, no. 13, pp. 4640–4652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Scheel and R. A. Weinberg, “Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells?” International Journal of Cancer, vol. 129, no. 10, pp. 2310–2314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Iliopoulos, H. A. Hirsch, G. Wang, and K. Struhl, “Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1397–1402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Peñuelas, J. Anido, R. M. Prieto-Sánchez et al., “TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma,” Cancer Cell, vol. 15, no. 4, pp. 315–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. C. Hendrix, E. A. Seftor, R. E. B. Seftor, J. Kasemeier-Kulesa, P. M. Kulesa, and L.-M. Postovit, “Reprogramming metastatic tumour cells with embryonic microenvironments,” Nature Reviews Cancer, vol. 7, no. 4, pp. 246–255, 2007. View at Publisher · View at Google Scholar · View at Scopus