Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2014, Article ID 438352, 10 pages
http://dx.doi.org/10.1155/2014/438352
Research Article

The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells

1Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal

Received 11 February 2014; Revised 30 April 2014; Accepted 9 May 2014; Published 15 July 2014

Academic Editor: Pavla Jendelova

Copyright © 2014 Ana O. Pires et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Emsley, B. D. Mitchell, G. Kempermann, and J. D. Macklis, “Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells,” Progress in Neurobiology, vol. 75, no. 5, pp. 321–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. G. Teixeira, M. M. Carvalho, N. Sousa, and A. J. Salgado, “Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?” Cellular and Molecular Life Sciences, vol. 70, pp. 3871–3882, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Carvalho, F. G. Teixeira, R. L. Reis, N. Sousa, and A. J. Salgado, “Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine,” Current Stem Cell Research and Therapy, vol. 6, no. 3, pp. 221–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ohtaki, J. H. Ylostalo, J. E. Foraker et al., “Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14638–14643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Hirko, R. Dallasen, S. Jomura, and Y. Xu, “Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells,” Stem Cells, vol. 26, no. 11, pp. 2893–2901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Cizkova, J. Rosocha, I. Vanicky, S. Jergova, and M. Cizek, “Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat,” Cellular and Molecular Neurobiology, vol. 26, pp. 1167–1180, 2006. View at Google Scholar
  8. H. L. Kyung, H. Suh-Kim, S. C. Ji et al., “Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats,” Acta Neurobiologiae Experimentalis, vol. 67, no. 1, pp. 13–22, 2007. View at Google Scholar · View at Scopus
  9. G. Bouchez, L. Sensebé, P. Vourc’h et al., “Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease,” Neurochemistry International, vol. 52, no. 7, pp. 1332–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Weiss, S. Medicetty, A. R. Bledsoe et al., “Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease,” Stem Cells, vol. 24, no. 3, pp. 781–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Offen, Y. Barhum, Y.-S. Levy et al., “Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease,” Journal of Neural Transmission, Supplementa, no. 72, pp. 133–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bahat-Stroomza, Y. Barhum, Y. S. Levy et al., “Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in parkinson’s disease,” Journal of Molecular Neuroscience, vol. 39, no. 1-2, pp. 199–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Shetty, G. Ravindran, S. Sarang, A. M. Thakur, H. S. Rao, and C. Viswanathan, “Clinical grade mesenchymal stem cells transdifferentiated under xenofree conditions alleviates motor deficiencies in a rat model of Parkinson’s disease,” Cell Biology International, vol. 33, no. 8, pp. 830–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hayase, M. Kitada, S. Wakao et al., “Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 8, pp. 1409–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Pedram, M. M. Dehghan, M. Soleimani, D. Sharifi, S. H. Marjanmehr, and Z. Nasiri, “Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats,” Spinal Cord, vol. 48, no. 6, pp. 457–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, article 204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Maltman, S. A. Hardy, and S. A. Przyborski, “Role of mesenchymal stem cells in neurogenesis and nervous system repair,” Neurochemistry International, vol. 59, no. 3, pp. 347–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Liu, L. Song, C. Jiang et al., “Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation—a mini-review,” International Journal of Artificial Organs, vol. 35, no. 5, pp. 323–337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Ribeiro, A. J. Salgado, J. S. Fraga, N. A. Silva, R. L. Reis, and N. Sousa, “The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures),” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 8, pp. 668–672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Nakano, Y. Nakai, T.-B. Seo et al., “Characterization of conditioned medium of cultured bone marrow stromal cells,” Neuroscience Letters, vol. 483, no. 1, pp. 57–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Chen, M. Katakowski, Y. Li et al., “Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production,” Journal of Neuroscience Research, vol. 69, no. 5, pp. 687–691, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Qu, Y. Li, Q. Gao et al., “Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts,” Neuropathology, vol. 27, no. 4, pp. 355–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Li, J. Chen, X. G. Chen et al., “Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery,” Neurology, vol. 59, no. 4, pp. 514–523, 2002. View at Google Scholar · View at Scopus
  24. K. B. Mackay, S. A. Loddick, G. S. Naeve, A. M. Vana, G. M. Verge, and A. C. Foster, “Neuroprotective effects of insulin-like growth factor-binding protein ligand inhibitors in vitro and in vivo,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 10, pp. 1160–1167, 2003. View at Google Scholar · View at Scopus
  25. K. Wakabayashi, A. Nagai, A. M. Sheikh et al., “Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model,” Journal of Neuroscience Research, vol. 88, no. 5, pp. 1017–1025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. T. Wright, W. El Masri, A. Osman et al., “Bone marrow stromal cells stimulate neurite outgrowth over neural proteoglycans (CSPG), myelin associated glycoprotein and Nogo-A,” Biochemical and Biophysical Research Communications, vol. 354, no. 2, pp. 559–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Kamei, N. Tanaka, Y. Oishi et al., “Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats,” Journal of Neurosurgery: Spine, vol. 6, no. 5, pp. 412–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Führmann, K. Montzka, L. M. Hillen et al., “Axon growth-promoting properties of human bone marrow mesenchymal stromal cells,” Neuroscience Letters, vol. 474, no. 1, pp. 37–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Gu, J. Wang, F. Ding, N. Hu, Y. Wang, and X. Gu, “Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons,” Journal of Molecular Neuroscience, vol. 40, no. 3, pp. 332–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Lu, L. L. Jones, and M. H. Tuszynski, “BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury,” Experimental Neurology, vol. 191, no. 2, pp. 344–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Neuhuber, B. Timothy Himes, J. S. Shumsky, G. Gallo, and I. Fischer, “Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations,” Brain Research, vol. 1035, no. 1, pp. 73–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. T. Himes, B. Neuhuber, C. Coleman et al., “Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord,” Neurorehabilitation and Neural Repair, vol. 20, no. 2, pp. 278–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Shintani, N. Nakao, K. Kakishita, and T. Itakura, “Protection of dopamine neurons by bone marrow stromal cells,” Brain Research, vol. 1186, no. 1, pp. 48–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Wang, T. Yasuhara, T. Shingo et al., “Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1α,” BMC Neuroscience, vol. 11, article 52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Cova, M.-T. Armentero, E. Zennaro et al., “Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease,” Brain Research, vol. 1311, pp. 12–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. Ribeiro, J. S. Fraga, M. Grãos et al., “The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations,” Stem Cell Research and Therapy, vol. 3, no. 3, article 18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Fraga, N. A. Silva, A. S. Lourenço et al., “Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations,” Biochimie, vol. 95, pp. 2297–2303, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. D.-C. Ding, W.-C. Shyu, M.-F. Chiang et al., “Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model,” Neurobiology of Disease, vol. 27, no. 3, pp. 339–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S.-H. Koh, K. S. Kim, M. R. Choi et al., “Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats,” Brain Research, vol. 1229, pp. 233–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y.-C. Lin, T.-L. Ko, Y.-H. Shih et al., “Human umbilical mesenchymal stem cells promote recovery after ischemic stroke,” Stroke, vol. 42, no. 7, pp. 2045–2053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C.-C. Yang, Y.-H. Shih, M.-H. Ko, S.-Y. Hsu, H. Cheng, and Y.-S. Fu, “Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord,” PLoS ONE, vol. 3, no. 10, Article ID e3336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-L. Hu, H.-S. Luo, J.-T. Li et al., “Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells,” Critical Care Medicine, vol. 38, no. 11, pp. 2181–2189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Blomhoff and H. K. Blomhoff, “Overview of retinoid metabolism and function,” Journal of Neurobiology, vol. 66, no. 7, pp. 606–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. N. A. Silva, J. M. Gimble, N. Sousa, R. L. Reis, and A. J. Salgado, “Combining adult stem cells and olfactory ensheathing cells: the secretome effect,” Stem Cells and Development, vol. 22, no. 8, pp. 1232–1240, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Sarugaser, D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies, “Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors,” Stem Cells, vol. 23, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. F. M. Lopes, R. Schröder, M. L. da Frota Jr. et al., “Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies,” Brain Research, vol. 1337, pp. 85–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Encinas, M. Iglesias, Y. Liu et al., “Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells,” Journal of Neurochemistry, vol. 75, no. 3, pp. 991–1003, 2000. View at Google Scholar
  48. S. D. Wenker, M. E. Chamorro, D. M. Vota, M. A. Callero, D. C. Vittori, and A. B. Nesse, “Differential antiapoptotic effect of erythropoietin on undifferentiated and retinoic acid-differentiated SH-SY5Y cells,” Journal of Cellular Biochemistry, vol. 110, no. 1, pp. 151–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Pool, J. Thiemann, A. Bar-Or, and A. E. Fournier, “NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth,” Journal of Neuroscience Methods, vol. 168, no. 1, pp. 134–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Constantinescu, A. T. Constantinescu, H. Reichmann, and B. Janetzky, “Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y,” Journal of Neural Transmission, Supplementa, no. 72, pp. 17–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. H.-R. Xie, L.-S. Hu, and G.-Y. Li, “SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease,” Chinese Medical Journal, vol. 123, no. 8, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Storch, Y.-I. Hwang, D. A. Gearhart et al., “Dopamine transporter-mediated cytotoxicity of β-carbolinium derivatives related to Parkinson’s disease: relationship to transporter-dependent uptake,” Journal of Neurochemistry, vol. 89, no. 3, pp. 685–694, 2004. View at Google Scholar · View at Scopus