Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015, Article ID 106540, 12 pages
http://dx.doi.org/10.1155/2015/106540
Research Article

Immune Suppressive Effects of Tonsil-Derived Mesenchymal Stem Cells on Mouse Bone-Marrow-Derived Dendritic Cells

1Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
2Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea

Received 21 November 2014; Revised 9 January 2015; Accepted 24 January 2015

Academic Editor: Armand Keating

Copyright © 2015 Minhwa Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Shi, Z. W. Liu, and F. S. Wang, “Immunomodulatory properties and therapeutic application of mesenchymal stem cells,” Clinical and Experimental Immunology, vol. 164, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan, “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation,” Transplantation, vol. 75, no. 3, pp. 389–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. di Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. Spaggiari, A. Capobianco, S. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation,” Blood, vol. 107, no. 4, pp. 1484–1490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-J. Jung, S.-Y. Ju, E.-S. Yoo et al., “MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC,” Cytotherapy, vol. 9, no. 5, pp. 451–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. H. Ryu, K. A. Cho, H. S. Park et al., “Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking,” Cytotherapy, vol. 14, no. 10, pp. 1193–1202, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Gonzalez-Rey, M. A. Gonzalez, N. Varela et al., “Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 241–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Domínguez and C. Ardavín, “Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation,” Immunological Reviews, vol. 234, no. 1, pp. 90–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Metcalf, N. A. Nicola, S. Mifsud, and L. di Rago, “Receptor clearance obscures the magnitude of granulocyte-macrophage colony-stimulating factor responses in mice to endotoxin or local infections,” Blood, vol. 93, no. 5, pp. 1579–1585, 1999. View at Google Scholar · View at Scopus
  12. G. M. Spaggiari, A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. M. Duffy, T. Ritter, R. Ceredig, and M. D. Griffin, “Mesenchymal stem cell effects on T-cell effector pathways,” Stem Cell Research and Therapy, vol. 2, no. 4, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ghannam, J. Pène, G. Torcy-Moquet, C. Jorgensen, and H. Yssel, “Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype,” The Journal of Immunology, vol. 185, no. 1, pp. 302–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Asari, S. Itakura, K. Ferreri et al., “Mesenchymal stem cells suppress B-cell terminal differentiation,” Experimental Hematology, vol. 37, no. 5, pp. 604–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W.-H. Liu, J.-J. Liu, J. Wu et al., “Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway,” PLoS ONE, vol. 8, no. 1, Article ID e55487, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Zhang, R. Liu, D. Shi et al., “Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2 dependent regulatory dendritic cell population,” Blood, vol. 113, no. 1, pp. 46–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chiesa, S. Morbelli, S. Morando et al., “Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 42, pp. 17384–17389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Kim and P. Hematti, “Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages,” Experimental Hematology, vol. 37, no. 12, pp. 1445–1453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D.-I. Cho, M. R. Kim, H.-Y. Jeong et al., “Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages,” Experimental & Molecular Medicine, vol. 46, no. 1, article e70, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Maccario, M. Podestà, A. Moretta et al., “Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype,” Haematologica, vol. 90, no. 4, pp. 516–525, 2005. View at Google Scholar · View at Scopus
  23. X.-X. Jiang, Y. Zhang, B. Liu et al., “Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells,” Blood, vol. 105, no. 10, pp. 4120–4126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Djouad, L.-M. Charbonnier, C. Bouffi et al., “Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism,” Stem Cells, vol. 25, no. 8, pp. 2025–2032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. A. Valdez, P. J. Vithayathil, B. M. Janelsins, A. L. Shaffer, P. R. Williamson, and S. K. Datta, “Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells,” Immunity, vol. 36, no. 4, pp. 668–679, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. B. V. Lugt, A. A. Khan, J. A. Hackney et al., “Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation,” Nature Immunology, vol. 15, no. 2, pp. 161–167, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. G. De Wert and C. Mummery, “Human embryonic stem cells: research, ethics and policy,” Human Reproduction, vol. 18, no. 4, pp. 672–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Medvedev, A. I. Shevchenko, and S. M. Zakian, “Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine,” Acta Naturae, vol. 2, no. 2, pp. 18–28, 2010. View at Google Scholar
  29. M.-C. Kastrinaki, I. Andreakou, P. Charbord, and H. A. Papadaki, “Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile,” Tissue Engineering, Part C: Methods, vol. 14, no. 4, pp. 333–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Choumerianou, H. Dimitriou, and M. Kalmanti, “Stem cells: promises versus limitations,” Tissue Engineering Part B: Reviews, vol. 14, no. 1, pp. 53–60, 2008. View at Publisher · View at Google Scholar · View at Scopus