Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015, Article ID 132172, 12 pages
http://dx.doi.org/10.1155/2015/132172
Review Article

Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions

1Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu 632002, India
2Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, Tamil Nadu 632002, India

Received 24 October 2014; Revised 4 February 2015; Accepted 5 February 2015

Academic Editor: Shahriar Yaghoubi

Copyright © 2015 Vikram Sabapathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Yip and A. Malaspina, “Spinal cord trauma and the molecular point of no return,” Molecular Neurodegeneration, vol. 7, no. 1, article 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Cripps, B. B. Lee, P. Wing, E. Weerts, J. MacKay, and D. Brown, “A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention,” Spinal Cord, vol. 49, no. 4, pp. 493–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Sebastià-Alcácer, M. Alcanyis-Alberola, M. Giner-Pascual, and F. Gomez-Pajares, “Are the characteristics of the patient with a spinal cord injury changing?” Spinal Cord, vol. 52, no. 1, pp. 29–33, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Wyndaele and J.-J. Wyndaele, “Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?” Spinal Cord, vol. 44, no. 9, pp. 523–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Cui, L. Chen, Y. Ren et al., “Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies,” BioScience Trends, vol. 7, no. 5, pp. 202–208, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Albert, J.-F. Ravaud, A. Papa et al., “Rehabilitation of spinal cord injury in France: a nationwide multicentre study of incidence and regional disparities,” Spinal Cord, vol. 43, no. 6, pp. 357–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Pickett, K. Simpson, J. Walker, and R. J. Brison, “Traumatic spinal cord injury in Ontario, Canada,” The Journal of Trauma—Injury, Infection and Critical Care, vol. 55, no. 6, pp. 1070–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. W. New, H. B. Rawicki, and M. J. Bailey, “Nontraumatic spinal cord injury: demographic characteristics and complications,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 7, pp. 996–1001, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Thuret, L. D. F. Moon, and F. H. Gage, “Therapeutic interventions after spinal cord injury,” Nature Reviews Neuroscience, vol. 7, no. 8, pp. 628–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. McDonald and C. Sadowsky, “Spinal-cord injury,” The Lancet, vol. 359, no. 9304, pp. 417–425, 2002. View at Publisher · View at Google Scholar
  11. C. H. Tator, “Update on the pathophysiology and pathology of acute spinal cord injury,” Brain Pathology, vol. 5, no. 4, pp. 407–413, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Bauchet, N. Lonjon, F.-E. Perrin, C. Gilbert, A. Privat, and C. Fattal, “Strategies for spinal cord repair after injury: a review of the literature and information,” Annals of Physical and Rehabilitation Medicine, vol. 52, no. 4, pp. 330–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. A. Kakulas, “A review of the neuropathology of human spinal cord injury with emphasis on special features,” The Journal of Spinal Cord Medicine, vol. 22, no. 2, pp. 119–124, 1999. View at Google Scholar · View at Scopus
  14. M. D. Norenberg, J. Smith, and A. Marcillo, “The pathology of human spinal cord injury: defining the problems,” Journal of Neurotrauma, vol. 21, no. 4, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. Rowland, G. W. J. Hawryluk, B. Kwon, and M. G. Fehlings, “Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon,” Neurosurgical Focus, vol. 25, no. 5, article E2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Deumens, G. C. Koopmans, W. M. M. Honig et al., “Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 811–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Li and G. Lepski, “Cell transplantation for spinal cord injury: a systematic review,” BioMed Research International, vol. 2013, Article ID 786475, 32 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Nakamura and H. Okano, “Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells,” Cell Research, vol. 23, no. 1, pp. 70–80, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Bottai, D. Cigognini, L. Madaschi et al., “Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice,” Experimental Neurology, vol. 223, no. 2, pp. 452–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Matsuda, M. Yoshikawa, H. Kimura et al., “Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development,” Cell Transplantation, vol. 18, no. 1, pp. 39–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kumagai, Y. Okada, J. Yamane et al., “Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury,” PLoS ONE, vol. 4, no. 11, Article ID e7706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Fujimoto, M. Abematsu, A. Falk et al., “Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells,” Stem Cells, vol. 30, no. 6, pp. 1163–1173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Kobayashi, Y. Okada, G. Itakura et al., “Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity,” PLoS ONE, vol. 7, no. 12, Article ID e52787, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y.-F. Cui, J.-C. Xu, G. Hargus, I. Jakovcevski, M. Schachner, and C. Bernreuther, “Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice,” PLoS ONE, vol. 6, no. 3, Article ID e17126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. F. E. Perrin, G. Boniface, C. Serguera et al., “Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury,” PLoS ONE, vol. 5, no. 12, Article ID e15914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Hatami, N. Z. Mehrjardi, S. Kiani et al., “Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord,” Cytotherapy, vol. 11, no. 5, pp. 618–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Niapour, F. Karamali, S. Nemati et al., “Cotransplantation of human embryonic stem cell-derived neural progenitors and Schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery,” Cell Transplantation, vol. 21, no. 5, pp. 827–843, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. L. Rossi, G. Nistor, T. Wyatt et al., “Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord,” PLoS ONE, vol. 5, no. 7, Article ID e11852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. S. Keirstead, G. Nistor, G. Bernal et al., “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury,” The Journal of Neuroscience, vol. 25, no. 19, pp. 4694–4705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Kerr, B. S. Letzen, C. M. Hill et al., “Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury,” International Journal of Neuroscience, vol. 120, no. 4, pp. 305–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Sharp, J. Frame, M. Siegenthaler, G. Nistor, and H. S. Keirstead, “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury,” Stem Cells, vol. 28, no. 1, pp. 152–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Erceg, M. Ronaghi, M. Oria et al., “Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection,” Stem Cells, vol. 28, no. 9, pp. 1541–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Salehi, P. Pasbakhsh, M. Soleimani et al., “Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell,” Iranian Biomedical Journal, vol. 13, no. 3, pp. 125–135, 2009. View at Google Scholar · View at Scopus
  34. D.-S. Kim, S. E. Jung Jung, T. S. Nam et al., “Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury,” Stem Cells, vol. 28, no. 11, pp. 2099–2108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. B. Abrams, C. Dominguez, K. Pernold et al., “Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury,” Restorative Neurology and Neuroscience, vol. 27, no. 4, pp. 307–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Gu, F. Zhang, Q. Xue, Z. Ma, P. Lu, and B. Yu, “Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord,” Neuropathology, vol. 30, no. 3, pp. 205–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E.-S. Kang, K.-Y. Ha, and Y.-H. Kim, “Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes,” Journal of Korean Medical Science, vol. 27, no. 6, pp. 586–593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Karaoz, S. KabataS, G. Duruksu et al., “Reduction of lesion in injured rat spinal cord and partial functional recovery of motility after bone marrow derived mesenchymal stem cell transplantation,” Turkish Neurosurgery, vol. 22, no. 2, pp. 207–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. A. J. Mothe, G. Bozkurt, J. Catapano et al., “Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat,” Spinal Cord, vol. 49, no. 9, pp. 967–973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Nakajima, K. Uchida, A. R. Guerrero et al., “Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury,” Journal of Neurotrauma, vol. 29, no. 8, pp. 1614–1625, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Osaka, O. Honmou, T. Murakami et al., “Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome,” Brain Research, vol. 1343, pp. 226–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. W. B. Park, S. Y. Kim, S. H. Lee, H.-W. Kim, J.-S. Park, and J. K. Hyun, “The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats,” BMC Neuroscience, vol. 11, article 119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Boido, D. Garbossa, M. Fontanella, A. Ducati, and A. Vercelli, “Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression,” World Neurosurgery, vol. 81, no. 1, pp. 183–190, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. K. N. Kang, D. Y. Kim, S. M. Yoon et al., “Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells,” Biomaterials, vol. 33, no. 19, pp. 4828–4835, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Zeng, Y.-S. Zeng, Y.-H. Ma et al., “Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury,” Cell Transplantation, vol. 20, no. 11-12, pp. 1881–1899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J.-H. Lee, W.-H. Chung, E.-H. Kang et al., “Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury,” Journal of the Neurological Sciences, vol. 300, no. 1-2, pp. 86–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. S.-R. Cho, Y. R. Kim, H.-S. Kang et al., “Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of spinal cord injury,” Cell Transplantation, vol. 18, no. 12, pp. 1359–1368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. S. Pedram, M. M. Dehghan, M. Soleimani, D. Sharifi, S. H. Marjanmehr, and Z. Nasiri, “Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats,” Spinal Cord, vol. 48, no. 6, pp. 457–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S.-S. Park, Y. J. Lee, S. H. Lee et al., “Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells,” Cytotherapy, vol. 14, no. 5, pp. 584–597, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. A. R. Alexanian, M. G. Fehlings, Z. Zhang, and D. J. Maiman, “Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 873–880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. W.-G. Liu, Z.-Y. Wang, and Z.-S. Huang, “Bone marrow-derived mesenchymal stem cells expressing the bFGF transgene promote axon regeneration and functional recovery after spinal cord injury in rats,” Neurological Research, vol. 33, no. 7, pp. 686–693, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. Y.-J. Zhang, W. Zhang, C.-G. Lin et al., “Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats,” Journal of the Neurological Sciences, vol. 313, no. 1-2, pp. 64–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A.-J. Shang, S.-Q. Hong, Q. Xu et al., “NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats,” Brain Research, vol. 1391, pp. 102–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. R. Jeong, M. J. Kwon, H. G. Lee et al., “Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury,” Experimental Neurology, vol. 233, no. 1, pp. 312–322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Sasaki, C. Radtke, A. M. Tan et al., “BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury,” The Journal of Neuroscience, vol. 29, no. 47, pp. 14932–14941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. E. Rooney, S. S. McMahon, T. Ritter et al., “Neurotrophic factor-expressing mesenchymal stem cells survive transplantation into the contused spinal cord without differentiating into neural cells,” Tissue Engineering—Part A, vol. 15, no. 10, pp. 3049–3059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Kumagai, P. Tsoulfas, S. Toh, I. McNiece, H. M. Bramlett, and W. D. Dietrich, “Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury,” Experimental Neurology, vol. 248, pp. 369–380, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Ding, Q. Yan, J.-W. Ruan et al., “Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats,” Cell Transplantation, vol. 22, no. 1, pp. 65–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Yasuda, O. Tsuji, S. Shibata et al., “Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord,” Stem Cells (Dayton, Ohio), vol. 29, no. 12, pp. 1983–1994, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Webber, E. J. Bradbury, S. B. McMahon, and S. L. Minger, “Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord,” Regenerative Medicine, vol. 2, no. 6, pp. 929–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. L. Salazar, N. Uchida, F. P. T. Hamers, B. J. Cummings, and A. J. Anderson, “Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model,” PLoS ONE, vol. 5, no. 8, Article ID e12272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. I. Tarasenko, J. Gao, L. Nie et al., “Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior,” Journal of Neuroscience Research, vol. 85, no. 1, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Yan, L. Xu, A. M. Welsh et al., “Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord,” PLoS Medicine, vol. 4, no. 2, article e39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Åkesson, J.-H. Piao, E.-B. Samuelsson et al., “Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres,” Physiology & Behavior, vol. 92, no. 1-2, pp. 60–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. D. H. Hwang, B. G. Kim, E. J. Kim et al., “Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury,” BMC Neuroscience, vol. 10, article 117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Wang, Q. Ao, K. Gong, H. Zuo, Y. Gong, and X. Zhang, “Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury,” Cell Transplantation, vol. 19, no. 10, pp. 1325–1337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B.-L. Du, X. Zeng, Y.-H. Ma et al., “Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection,” Journal of Biomedical Materials Research A, 2014. View at Publisher · View at Google Scholar
  68. K.-J. Liu, J. Xu, C.-Y. Yang et al., “Analysis of olfactory ensheathing glia transplantation-induced repair of spinal cord injury by electrophysiological, behavioral, and histochemical methods in rats,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 25–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. C. Stamegna, M. S. Felix, J. Roux-Peyronnet et al., “Nasal OEC transplantation promotes respiratory recovery in a subchronic rat model of cervical spinal cord contusion,” Experimental Neurology, vol. 229, no. 1, pp. 120–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Tharion, K. Indirani, M. Durai et al., “Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury,” Neurology India, vol. 59, no. 4, pp. 566–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. D. Ziegler, D. Hsu, A. Takeoka et al., “Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection,” Experimental Neurology, vol. 229, no. 1, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Amemori, P. Jendelová, K. Růžičková, D. Arboleda, and E. Syková, “Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat,” Cytotherapy, vol. 12, no. 2, pp. 212–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. Y.-H. Ma, Y. Zhang, L. Cao et al., “Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury,” Cell Transplantation, vol. 19, no. 2, pp. 167–177, 2010. View at Publisher · View at Google Scholar
  74. M. Agudo, A. Woodhoo, D. Webber, R. Mirsky, K. R. Jessen, and S. B. McMahon, “Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth,” Glia, vol. 56, no. 12, pp. 1263–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Biernaskie, J. S. Sparling, J. Liu et al., “Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury,” The Journal of Neuroscience, vol. 27, no. 36, pp. 9545–9559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Patel, G. Joseph, A. Patel et al., “Suspension matrices for improved Schwann-cell survival after implantation into the injured rat spinal cord,” Journal of Neurotrauma, vol. 27, no. 5, pp. 789–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D.-X. Ban, G.-Z. Ning, S.-Q. Feng et al., “Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats,” Regenerative Medicine, vol. 6, no. 6, pp. 707–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Fouad, L. Schnell, M. B. Bunge, M. E. Schwab, T. Liebscher, and D. D. Pearse, “Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord,” Journal of Neuroscience, vol. 25, no. 5, pp. 1169–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. H. E. Olson, G. E. Rooney, L. Gross et al., “Neural stem cell- and schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord,” Tissue Engineering—Part A, vol. 15, no. 7, pp. 1797–1805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Huang, L. Chen, H. Wang et al., “Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury,” Chinese Medical Journal, vol. 116, no. 10, pp. 1488–1491, 2003. View at Google Scholar · View at Scopus
  81. K.-S. Kang, S. W. Kim, Y. H. Oh et al., “A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study,” Cytotherapy, vol. 7, no. 4, pp. 368–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. T. E. Ichim, F. Solano, F. Lara et al., “Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report,” International Archives of Medicine, vol. 3, no. 1, article 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. N. A. Kishk, H. Gabr, S. Hamdy et al., “Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 24, no. 8, pp. 702–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Bhanot, S. Rao, D. Ghosh, S. Balaraju, C. R. Radhika, and K. V. S. Kumar, “Autologous mesenchymal stem cells in chronic spinal cord injury,” British Journal of Neurosurgery, vol. 25, no. 4, pp. 516–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Karamouzian, S. N. Nematollahi-Mahani, N. Nakhaee, and H. Eskandary, “Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients,” Clinical Neurology and Neurosurgery, vol. 114, no. 7, pp. 935–939, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. J. H. Park, D. Y. Kim, I. Y. Sung et al., “Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans,” Neurosurgery, vol. 70, no. 5, pp. 1238–1247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Saberi, P. Moshayedi, H.-R. Aghayan et al., “Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes,” Neuroscience Letters, vol. 443, no. 1, pp. 46–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Saberi, M. Firouzi, Z. Habibi et al., “Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases,” Journal of Neurosurgery: Spine, vol. 15, no. 5, pp. 515–525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. X.-H. Zhou, G.-Z. Ning, S.-Q. Feng et al., “Transplantation of autologous activated schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up,” Cell Transplantation, vol. 21, supplement 1, pp. S39–S47, 2012. View at Google Scholar · View at Scopus
  90. O. Nesic, N. M. Svrakic, G.-Y. Xu et al., “DNA microarray analysis of the contused spinal cord: effect of NMDA receptor inhibition,” Journal of Neuroscience Research, vol. 68, no. 4, pp. 406–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Z. Pan, L. Ni, A. Sodhi, A. Aguanno, W. Young, and R. P. Hart, “Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion,” Journal of Neuroscience Research, vol. 68, no. 3, pp. 315–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. F. M. Bareyre and M. E. Schwab, “Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays,” Trends in Neurosciences, vol. 26, no. 10, pp. 555–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Fan, R. Mi, D. T. Yew, and W. Y. Chan, “Analysis of gene expression following sciatic nerve crush and spinal cord hemisection in the mouse by microarray expression profiling,” Cellular and Molecular Neurobiology, vol. 21, no. 5, pp. 497–508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. S. di Giovanni, S. M. Knoblach, C. Brandoli, S. A. Aden, E. P. Hoffman, and A. I. Faden, “Gene profiling in spinal cord injury shows role of cell cycle in neuronal death,” Annals of Neurology, vol. 53, no. 4, pp. 454–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Song, C. Cechvala, D. K. Resnick, R. J. Dempsey, and V. L. Raghavendra Rao, “GeneChip analysis after acute spinal cord injury in rat,” Journal of Neurochemistry, vol. 79, no. 4, pp. 804–815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. J. B. Carmel, A. Galante, P. Soteropoulos et al., “Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss,” Physiol Genomics, vol. 7, no. 2, pp. 201–213, 2001. View at Google Scholar · View at Scopus
  97. D. Garbossa, M. Boido, M. Fontanella, C. Fronda, A. Ducati, and A. Vercelli, “Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells,” Neurosurgical Review, vol. 35, no. 3, pp. 293–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. D. D. Pearse and M. B. Bunge, “Designing cell- and gene-based regeneration strategies to repair the injured spinal cord,” Journal of Neurotrauma, vol. 23, no. 3-4, pp. 438–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Antonic, E. S. Sena, J. S. Lees et al., “Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies,” PLoS Biology, vol. 11, no. 12, Article ID e1001738, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. C. Puri and A. Nagy, “Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on,” Stem Cells, vol. 30, no. 1, pp. 10–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. O. Tsuji, K. Miura, K. Fujiyoshi, S. Momoshima, M. Nakamura, and H. Okano, “Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells,” Neurotherapeutics, vol. 8, no. 4, pp. 668–676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Chen, C. Bernreuther, M. Dihné, and M. Schachner, “Cell adhesion molecule L1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury,” Journal of Neurotrauma, vol. 22, no. 8, pp. 896–906, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Galichet, F. Guillemot, and C. M. Parras, “Neurogenin 2 has an essential role in development of the dentate gyrus,” Development, vol. 135, no. 11, pp. 2031–2041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. X. Zhang, M. Hirai, S. Cantero et al., “Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue,” Journal of Cellular Biochemistry, vol. 112, no. 4, pp. 1206–1218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J.-G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, article 530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. M. W. Lee, M. S. Yang, J. S. Park, H. C. Kim, Y. J. Kim, and J. Choi, “Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood,” International Journal of Hematology, vol. 81, no. 2, pp. 126–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. D. D. Carrade, V. K. Affolter, C. A. Outerbridge et al., “Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions,” Cytotherapy, vol. 13, no. 10, pp. 1180–1192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Malgieri, E. Kantzari, M. P. Patrizi, and S. Gambardella, “Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art,” International Journal of Clinical and Experimental Medicine, vol. 3, no. 4, pp. 248–269, 2010. View at Google Scholar · View at Scopus
  111. M. Boido, D. Garbossa, M. Fontanella, A. Ducati, and A. Vercelli, “Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression,” World Neurosurgery, vol. 81, no. 1, pp. 183–190, 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. A. R. Alexanian, C. N. Svendsen, M. J. Crowe, and S. N. Kurpad, “Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia,” Cytotherapy, vol. 13, no. 1, pp. 61–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. Y.-W. Guo, Y.-Q. Ke, M. Li et al., “Human umbilical cord-derived schwann-like cell transplantation combined with neurotrophin-3 administration in dyskinesia of rats with spinal cord injury,” Neurochemical Research, vol. 36, no. 5, pp. 783–792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. E. Sulpice, S. Ding, B. Muscatelli-Groux et al., “Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells,” Biology of the Cell, vol. 101, no. 9, pp. 525–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. G. W. Hiebert, K. Khodarahmi, J. McGraw, J. D. Steeves, and W. Tetzlaff, “Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant,” Journal of Neuroscience Research, vol. 69, no. 2, pp. 160–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. C.-Y. Wang, F. Yang, X.-P. He et al., “Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin,” The Journal of Biological Chemistry, vol. 277, no. 12, pp. 10614–10625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Acsadi, R. A. Lewis, M. E. Shy et al., “Increased survival and function of SOD1 mice after Glial cell-derived neurotrophic factor gene therapy,” Human Gene Therapy, vol. 13, no. 9, pp. 1047–1059, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Urfer, P. Tsoulfas, D. Soppet, E. Escandón, L. F. Parada, and L. G. Presta, “The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin,” The EMBO Journal, vol. 13, no. 24, pp. 5896–5909, 1994. View at Google Scholar · View at Scopus
  119. E. J. Huang and L. F. Reichardt, “Neurotrophins: roles in neuronal development and function,” Annual Review of Neuroscience, vol. 24, pp. 677–736, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. K.-F. Lee, A. M. Davies, and R. Jaenisch, “p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF,” Development, vol. 120, no. 4, pp. 1027–1033, 1994. View at Google Scholar · View at Scopus
  121. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Temple, “Division and differentiation of isolated CNS blast cells in microculture,” Nature, vol. 340, no. 6233, pp. 471–473, 1989. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Ramón-Cueto and J. Avila, “Olfactory ensheathing glia: properties and function,” Brain Research Bulletin, vol. 46, no. 3, pp. 175–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. H.-W. Park, M.-J. Lim, H. Jung, S.-P. Lee, K.-S. Paik, and M.-S. Chang, “Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury,” Glia, vol. 58, no. 9, pp. 1118–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Ghosh, L. M. Tuesta, R. Puentes et al., “Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury,” Glia, vol. 60, no. 6, pp. 979–992, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Pierucci, E. A. R. Duek, and A. L. R. De Oliveira, “Expression of basal lamina components by Schwann cells cultured on poly(lactic acid) (PLLA) and poly(caprolactone) (PCL) membranes,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 2, pp. 489–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Cyranoski, “Fetal-cell therapy: paper chase,” Nature, vol. 437, no. 7060, pp. 810–811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. B. H. Dobkin, A. Curt, and J. Guest, “Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 20, no. 1, pp. 5–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Curt and V. Dietz, “Controversial treatments for spinal-cord injuries,” The Lancet, vol. 365, no. 9462, pp. 841–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Aznar and J. L. Sánchez, “Embryonic stem cells: are useful in clinic treatments?” Journal of Physiology and Biochemistry, vol. 67, no. 1, pp. 141–144, 2011. View at Publisher · View at Google Scholar
  131. M. Sundberg, P.-H. Andersson, E. A. kesson et al., “Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue,” Cell Transplantation, vol. 20, no. 2, pp. 177–191, 2011. View at Publisher · View at Google Scholar · View at Scopus