Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015 (2015), Article ID 794632, 11 pages
http://dx.doi.org/10.1155/2015/794632
Review Article

Reprogramming with Small Molecules instead of Exogenous Transcription Factors

1Guangzhou University of Chinese Medicine, The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), 55 Neihuan W. Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, China
2Fujian Agriculture and Forestry University, Stem Cell Research Center, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian 350002, China

Received 29 November 2014; Revised 3 March 2015; Accepted 9 March 2015

Academic Editor: Amanda C. LaRue

Copyright © 2015 Tongxiang Lin and Shouhai Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar
  3. M. H. Chin, M. J. Mason, W. Xie et al., “Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures,” Cell Stem Cell, vol. 5, no. 1, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Takahashi, K. Okita, M. Nakagawa, and S. Yamanaka, “Induction of pluripotent stem cells from fibroblast cultures,” Nature Protocols, vol. 2, no. 12, pp. 3081–3089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Ohi, H. Qin, C. Hong et al., “Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells,” Nature Cell Biology, vol. 13, no. 5, pp. 541–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Xu, B. A. Yi, H. Wu et al., “Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature,” Cell Research, vol. 22, no. 1, pp. 142–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Bar-Nur, H. A. Russ, S. Efrat, and N. Benvenisty, “Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells,” Cell Stem Cell, vol. 9, no. 1, pp. 17–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Lee, D. Seo, D. Choi et al., “Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells,” Stem Cells, vol. 30, no. 5, pp. 997–1007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Lister, M. Pelizzola, Y. S. Kida et al., “Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 68–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Zhao, Z.-N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol. 474, no. 7350, pp. 212–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. H. Loh, J. C. Yang, A. de los Angeles et al., “Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA,” in Current Protocols in Stem Cell Biology, chapter 4, unit 4A.5, John Wiley & Sons, Hoboken, NJ, USA, 2012. View at Publisher · View at Google Scholar
  14. K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen, “Virus-free induction of pluripotency and subsequent excision of reprogramming factors,” Nature, vol. 458, no. 7239, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, “Induced pluripotent stem cells generated without viral integration,” Science, vol. 322, no. 5903, pp. 945–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Zhou and C. R. Freed, “Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells,” Stem Cells, vol. 27, no. 11, pp. 2667–2674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, “Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome,” Proceedings of the Japan Academy Series B: Physical and Biological Sciences, vol. 85, no. 8, pp. 348–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yu, K. Hu, K. Smuga-Otto et al., “Human induced pluripotent stem cells free of vector and transgene sequences,” Science, vol. 324, no. 5928, pp. 797–801, 2009. View at Publisher · View at Google Scholar
  21. K. Okita, Y. Matsumura, Y. Sato et al., “A more efficient method to generate integration-free human iPS cells,” Nature Methods, vol. 8, pp. 409–412, 2011. View at Publisher · View at Google Scholar
  22. F. Jia, K. D. Wilson, N. Sun et al., “A nonviral minicircle vector for deriving human iPS cells,” Nature Methods, vol. 7, pp. 197–199, 2010. View at Google Scholar
  23. H. Y. Park, E. H. Noh, H.-M. Chung, M.-J. Kang, E. Y. Kim, and S. P. Park, “Efficient generation of virus-free iPS cells using liposomal magnetofection,” PLoS ONE, vol. 7, no. 9, Article ID e45812, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar
  25. D. Kim, C.-H. Kim, J.-I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Hou, Y. Li, X. Zhang et al., “Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds,” Science, vol. 341, no. 6146, pp. 651–654, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Maherali, R. Sridharan, W. Xie et al., “Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution,” Cell Stem Cell, vol. 1, no. 1, pp. 55–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. S. Mikkelsen, J. Hanna, X. Zhang et al., “Dissecting direct reprogramming through integrative genomic analysis,” Nature, vol. 454, no. 7200, pp. 49–55, 2008. View at Publisher · View at Google Scholar
  30. R. Sridharan, J. Tchieu, M. J. Mason et al., “Role of the murine reprogramming factors in the induction of pluripotency,” Cell, vol. 136, no. 2, pp. 364–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Huangfu, R. Maehr, W. Guo et al., “Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds,” Nature Biotechnology, vol. 26, no. 7, pp. 795–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Shi, C. Desponts, J. T. Do, H. S. Hahm, H. R. Schöler, and S. Ding, “Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds,” Cell Stem Cell, vol. 3, no. 5, pp. 568–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Shi, J. T. Do, C. Desponts, H. S. Hahm, H. R. Schöler, and S. Ding, “A combined chemical and genetic approach for the generation of induced pluripotent stem cells,” Cell Stem Cell, vol. 2, pp. 525–528, 2008. View at Publisher · View at Google Scholar
  34. B. Nie, H. Wang, T. Laurent, and S. Ding, “Cellular reprogramming: a small molecule perspective,” Current Opinion in Cell Biology, vol. 24, no. 6, pp. 784–792, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Li, H. Zhou, R. Abujarour et al., “Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2,” Stem Cells, vol. 27, no. 12, pp. 2992–3000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. D. Hawkins, G. C. Hon, L. K. Lee et al., “Distinct epigenomic landscapes of pluripotent and lineage-committed human cells,” Cell Stem Cell, vol. 6, no. 5, pp. 479–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Shu, C. Wu, Y. Wu et al., “Induction of pluripotency in mouse somatic cells with lineage specifiers,” Cell, vol. 153, no. 5, pp. 963–975, 2013. View at Publisher · View at Google Scholar
  38. F. Lluis, L. Ombrato, E. Pedone, S. Pepe, B. J. Merrill, and M. P. Cosma, “T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 11912–11917, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Zhao and G. Q. Daley, “From fibroblasts to iPS cells: induced pluripotency by defined factors,” Journal of Cellular Biochemistry, vol. 105, no. 4, pp. 949–955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Niwa, “Wnt: what's Needed to maintain pluripotency?” Nature Cell Biology, vol. 13, no. 9, pp. 1024–1026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Marson, R. Foreman, B. Chevalier et al., “Wnt signaling promotes reprogramming of somatic cells to pluripotency,” Cell Stem Cell, vol. 3, no. 2, pp. 132–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Lyssiotis, R. K. Foreman, J. Staerk et al., “Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 22, pp. 8912–8917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. D. Holland, A. Klaus, A. N. Garratt, and W. Birchmeier, “Wnt signaling in stem and cancer stem cells,” Current Opinion in Cell Biology, vol. 25, no. 2, pp. 254–264, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Zhao, X. Yin, H. Qin et al., “Two supporting factors greatly improve the efficiency of human iPSC generation,” Cell Stem Cell, vol. 3, no. 5, pp. 475–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Hong, K. Takahashi, T. Ichisaka et al., “Suppression of induced pluripotent stem cell generation by the p53-p21 pathway,” Nature, vol. 460, no. 7259, pp. 1132–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Kawamura, J. Suzuki, Y. V. Wang et al., “Linking the p53 tumour suppressor pathway to somatic cell reprogramming,” Nature, vol. 460, no. 7259, pp. 1140–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Li, M. Collado, A. Villasante et al., “The Ink4/Arf locus is a barrier for iPS cell reprogramming,” Nature, vol. 460, no. 7259, pp. 1136–1139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Utikal, J. M. Polo, M. Stadtfeld et al., “Immortalization eliminates a roadblock during cellular reprogramming into iPS cells,” Nature, vol. 460, no. 7259, pp. 1145–1148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. M. Marión, K. Strati, H. Li et al., “A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity,” Nature, vol. 460, no. 7259, pp. 1149–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Krizhanovsky and S. W. Lowe, “Stem cells: the promises and perils of p53,” Nature, vol. 460, no. 7259, pp. 1085–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Lin, C. Chao, S. Saito et al., “p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression,” Nature Cell Biology, vol. 7, no. 2, pp. 165–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Shevde, “Stem cells: flexible friends,” Nature, vol. 483, no. 7387, pp. S22–S26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Esteban, T. Wang, B. Qin et al., “Vitamin C enhances the generation of mouse and human induced pluripotent stem cells,” Cell Stem Cell, vol. 6, no. 1, pp. 71–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. A. Robinton and G. Q. Daley, “The promise of induced pluripotent stem cells in research and therapy,” Nature, vol. 481, no. 7381, pp. 295–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Banito, S. T. Rashid, J. C. Acosta et al., “Senescence impairs successful reprogramming to pluripotent stem cells,” Genes & Development, vol. 23, no. 18, pp. 2134–2139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Yoshida, K. Takahashi, K. Okita, T. Ichisaka, and S. Yamanaka, “Hypoxia enhances the generation of induced pluripotent stem cells,” Cell Stem Cell, vol. 5, no. 3, pp. 237–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Prigione, B. Fauler, R. Lurz, H. Lehrach, and J. Adjaye, “The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells,” Stem Cells, vol. 28, no. 4, pp. 721–733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Zhu, W. Li, H. Zhou et al., “Reprogramming of human primary somatic cells by OCT4 and chemical compounds,” Cell Stem Cell, vol. 7, no. 6, pp. 651–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Li, J. Liang, S. Ni et al., “A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts,” Cell Stem Cell, vol. 7, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar
  61. P. Samavarchi-Tehrani, A. Golipour, L. David et al., “Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming,” Cell Stem Cell, vol. 7, no. 1, pp. 64–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Lin, R. Ambasudhan, X. Yuan et al., “A chemical platform for improved induction of human iPSCs,” Nature Methods, vol. 6, no. 11, pp. 805–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. K. Ichida, J. Blanchard, K. Lam et al., “A small-molecule inhibitor of tgf-β signaling replaces sox2 in reprogramming by inducing Nanog,” Cell Stem Cell, vol. 5, no. 5, pp. 491–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Yuan, H. Wan, X. Zhao, S. Zhu, Q. Zhou, and S. Ding, “Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts,” Stem Cells, vol. 29, no. 3, pp. 549–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. G. N. Pandian, S. Sato, C. Anandhakumar et al., “Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts,” ACS Chemical Biology, vol. 9, no. 12, pp. 2729–2736, 2014. View at Publisher · View at Google Scholar
  66. P. Mali, B.-K. Chou, J. Yen et al., “Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes,” Stem Cells, vol. 28, no. 4, pp. 713–720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Lee, Y. Xia, M.-Y. Son et al., “A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells,” Angewandte Chemie International Edition, vol. 51, no. 50, pp. 12509–12513, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. Q. Wang, X. Xu, J. Li et al., “Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells,” Cell Research, vol. 21, no. 10, pp. 1424–1435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. D. A. Claassen, M. M. Desler, and A. Rizzino, “ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells,” Molecular Reproduction and Development, vol. 76, no. 8, pp. 722–732, 2009. View at Publisher · View at Google Scholar
  70. Z. Li and T. M. Rana, “A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation,” Nature Communications, vol. 3, article 1085, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Chen, L. Shen, J. Yu et al., “Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells,” Aging Cell, vol. 10, no. 5, pp. 908–911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Shi, M. Zou, E. Y. Baitei et al., “Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma,” Cancer Gene Therapy, vol. 15, no. 2, pp. 101–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Li, Q. Zhang, X. Yin et al., “Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules,” Cell Research, vol. 21, no. 1, pp. 196–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Staerk, C. A. Lyssiotis, L. A. Medeiro et al., “Pan-src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells,” Angewandte Chemie—International Edition, vol. 50, no. 25, pp. 5734–5736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J.-H. Moon, J. S. Heo, J. S. Kim et al., “Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1,” Cell Research, vol. 21, no. 9, pp. 1305–1315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. D.-W. Jung, W.-H. Kim, and D. R. Williams, “Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming,” ACS Chemical Biology, vol. 9, no. 1, pp. 80–95, 2014. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. Pasha, H. K. Haider, and M. Ashraf, “Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells,” PLoS ONE, vol. 6, no. 8, Article ID e23667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Durnaoglu, S. Genc, and K. Genc, “Patient-specific pluripotent stem cells in neurological diseases,” Stem Cells International, vol. 2011, Article ID 212487, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. L. H. Mak, S. N. Georgiades, E. Rosivatz et al., “A small molecule mimicking a phosphatidylinositol (4,5)-bisphosphate binding pleckstrin homology domain,” ACS Chemical Biology, vol. 6, no. 12, pp. 1382–1390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. Q.-L. Ying, J. Wray, J. Nichols et al., “The ground state of embryonic stem cell self-renewal,” Nature, vol. 453, no. 7194, pp. 519–523, 2008. View at Publisher · View at Google Scholar
  81. B. Valamehr, M. Robinson, R. Abujarour et al., “Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells,” Stem Cell Reports, vol. 2, no. 3, pp. 366–381, 2014. View at Publisher · View at Google Scholar