Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015, Article ID 832649, 10 pages
http://dx.doi.org/10.1155/2015/832649
Review Article

Endothelial Progenitor Cells in Tumor Angiogenesis: Another Brick in the Wall

1Department of Physiology, Institute of Bioscience, University of São Paulo, Rua do Matão, Travessa 14, No. 101, Room 323, 05508-900 São Paulo, SP, Brazil
2Medical Investigation Laboratory 12, School of Medicine, University of São Paulo, Avenida Dr. Arnaldo, No. 455, Room 3310, 01246-903 São Paulo, SP, Brazil

Received 27 December 2014; Revised 25 March 2015; Accepted 27 March 2015

Academic Editor: Oswaldo Keith Okamoto

Copyright © 2015 Marina Marçola and Camila Eleuterio Rodrigues. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. K. Okamoto, “Cancer stem cell genomics: the quest for early markers of malignant progression,” Expert Review of Molecular Diagnostics, vol. 9, no. 6, pp. 545–554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Asahara, H. Masuda, T. Takahashi et al., “Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization,” Circulation Research, vol. 85, no. 3, pp. 221–228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Asahara and A. Kawamoto, “Endothelial progenitor cells for postnatal vasculogenesis,” The American Journal of Physiology—Cell Physiology, vol. 287, no. 3, pp. C572–C579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Balaji, A. King, T. M. Crombleholme, and S. G. Keswani, “The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing,” Advances in Wound Care, vol. 2, no. 6, pp. 283–295, 2013. View at Publisher · View at Google Scholar
  6. Q. Shi, S. Rafii, M. H. Wu et al., “Evidence for circulating bone marrow-derived endothelial cells,” Blood, vol. 92, no. 2, pp. 362–367, 1998. View at Google Scholar · View at Scopus
  7. F. Timmermans, J. Plum, M. C. Yöder, D. A. Ingram, B. Vandekerckhove, and J. Case, “Endothelial progenitor cells: identity defined?” Journal of Cellular and Molecular Medicine, vol. 13, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Sepúlveda, J. Martinez-León, and J. M. García-Verdugo, “Neoangiogenesis with endothelial precursors for the treatment of ischemia,” Transplantation Proceedings, vol. 39, no. 7, pp. 2089–2094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. E. Szmitko, P. W. M. Fedak, R. D. Weisel, D. J. Stewart, M. J. B. Kutryk, and S. Verma, “Endothelial progenitor cells: new hope for a broken heart,” Circulation, vol. 107, no. 24, pp. 3093–3100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Grunewald, I. Avraham, Y. Dor et al., “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Urbich, A. Aicher, C. Heeschen et al., “Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 5, pp. 733–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Rehman, J. Li, C. M. Orschell, and K. L. March, “Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors,” Circulation, vol. 107, no. 8, pp. 1164–1169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Bompais, J. Chagraoui, X. Canron et al., “Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells,” Blood, vol. 103, no. 7, pp. 2577–2584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-H. Yoon, J. Hur, K.-W. Park et al., “Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases,” Circulation, vol. 112, no. 11, pp. 1618–1627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Timmermans, F. van Hauwermeiren, M. de Smedt et al., “Endothelial outgrowth cells are not derived from CD133+ Cells or CD45+ hematopoietic precursors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 7, pp. 1572–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Yoder, L. E. Mead, D. Prater et al., “Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals,” Blood, vol. 109, no. 5, pp. 1801–1809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wang, L. Li, F. Shojaei et al., “Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties,” Immunity, vol. 21, no. 1, pp. 31–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Oberlin, M. Tavian, I. Blazsek, and B. Péault, “Blood-forming potential of vascular endothelium in the human embryo,” Development, vol. 129, no. 17, pp. 4147–4157, 2002. View at Google Scholar · View at Scopus
  19. M. A. Vodyanik, J. A. Thomson, and I. I. Slukvin, “Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures,” Blood, vol. 108, no. 6, pp. 2095–2105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. E. Sidney, M. J. Branch, S. E. Dunphy, H. S. Dua, and A. Hopkinson, “Concise review: evidence for CD34 as a common marker for diverse progenitors,” Stem Cells, vol. 32, no. 6, pp. 1380–1389, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Case, L. E. Mead, W. K. Bessler et al., “Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors,” Experimental Hematology, vol. 35, no. 7, pp. 1109–1118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Bertolini, Y. Shaked, P. Mancuso, and R. S. Kerbel, “The multifaceted circulating endothelial cell in cancer: towards marker and target identification,” Nature Reviews Cancer, vol. 6, no. 11, pp. 835–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. K. Hirschi and M. A. Goodell, “Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells,” Gene Therapy, vol. 9, no. 10, pp. 648–652, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P. H. Marker, and C. M. Verfaillie, “Origin of endothelial progenitors in human postnatal bone marrow,” The Journal of Clinical Investigation, vol. 109, no. 3, pp. 337–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Reyes, T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie, “Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells,” Blood, vol. 98, no. 9, pp. 2615–2625, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Jackson, S. M. Majka, H. Wang et al., “Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells,” The Journal of Clinical Investigation, vol. 107, no. 11, pp. 1395–1402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Rafii and D. Lyden, “Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration,” Nature Medicine, vol. 9, no. 6, pp. 702–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Russell and J. Brown, “Circulating mouse Flk1+/c-Kit+/CD45- cells function as endothelial progenitors cells (EPCs) and stimulate the growth of human tumor xenografts,” Molecular Cancer, vol. 13, article 177, 2014. View at Publisher · View at Google Scholar
  29. H.-S. Hwang, Y.-S. Maeng, Y.-H. Kim, Y.-G. Kwon, Y.-W. Park, and I.-K. Kim, “Nestin expression during differentiation of fetal endothelial progenitor cells and hypoxic culture of human umbilical vein endothelial cells,” Acta Obstetricia et Gynecologica Scandinavica, vol. 87, no. 6, pp. 643–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Melero-Martin and A. C. Dudley, “Concise review: vascular stem cells and tumor angiogenesis,” Stem Cells, vol. 29, no. 2, pp. 163–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Williamson, S. E. Stringer, and M. Y. Alexander, “Endothelial progenitor cells enter the aging arena,” Frontiers in Physiology, vol. 3, article 30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Lin, D. J. Weisdorf, A. Solovey, and R. P. Hebbel, “Origins of circulating endothelial cells and endothelial outgrowth from blood,” Journal of Clinical Investigation, vol. 105, no. 1, pp. 71–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Gulati, D. Jevremovic, T. E. Peterson et al., “Diverse origin and function of cells with endothelial phenotype obtained from adult human blood,” Circulation Research, vol. 93, no. 11, pp. 1023–1025, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Kim, Y. J. Jeon, H. E. Kim, J. M. Shin, H. M. Chung, and J. I. Chae, “Comparative proteomic analysis of endothelial cells progenitor cells derived from cord blood- and peripheral blood for cell therapy,” Biomaterials, vol. 34, no. 6, pp. 1669–1685, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Aguirre, J. A. Planell, and E. Engel, “Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis,” Biochemical and Biophysical Research Communications, vol. 400, no. 2, pp. 284–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Liu, Z. D. Du, Z. Chen, and Z. X. He, “Whole bone marrow cell culture: a convenient protocol for the in vitro expansion of endothelial progenitor cells,” Experimental and Therapeutic Medicine, vol. 8, no. 3, pp. 805–812, 2014. View at Publisher · View at Google Scholar
  37. Z. Lokmic, J. Musyoka, T. D. Hewitson, and I. A. Darby, “Hypoxia and hypoxia signaling in tissue repair and fibrosis,” International Review of Cell and Molecular Biology, vol. 296, pp. 139–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Portal-Núñez, D. Lozano, and P. Esbrit, “Role of angiogenesis on bone formation,” Histology and Histopathology, vol. 27, no. 5, pp. 559–566, 2012. View at Google Scholar · View at Scopus
  39. S. Konisti, S. Kiriakidis, and E. M. Paleolog, “Hypoxia-a key regulator of angiogenesis and inflammation in rheumatoid arthritis,” Nature Reviews Rheumatology, vol. 8, no. 3, pp. 153–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Bandello, L. Berchicci, C. La Spina, M. Battaglia Parodi, and P. Iacono, “Evidence for anti-VEGF treatment of diabetic macular edema,” Ophthalmic Research, vol. 48, supplement 1, pp. 16–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Claesson-Welsh, “VEGF-B taken to our hearts: specific effect of VEGF-B in myocardial ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1575–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. H. Ausprunk and J. Folkman, “Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis,” Microvascular Research, vol. 14, no. 1, pp. 53–65, 1977. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Käßmeyer, J. Plendl, P. Custodis, and M. Bahramsoltani, “New insights in vascular development: vasculogenesis and endothelial progenitor cells,” Journal of Veterinary Medicine, Series C: Anatomia Histologia Embryologia, vol. 38, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. B. Rifkin and D. Moscatelli, “Recent developments in the cell biology of basic fibroblast growth factor,” The Journal of Cell Biology, vol. 109, no. 1, pp. 1–6, 1989. View at Publisher · View at Google Scholar · View at Scopus
  45. R. F. Nicosia, S. V. Nicosia, and M. Smith, “Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro,” The American Journal of Pathology, vol. 145, no. 5, pp. 1023–1029, 1994. View at Google Scholar · View at Scopus
  46. Y. Takahashi, C. D. Bucana, W. Liu et al., “Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells,” Journal of the National Cancer Institute, vol. 88, no. 16, pp. 1146–1151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Suri, J. McClain, G. Thurston et al., “Increased vascularization in mice overexpressing angiopoietin-1,” Science, vol. 282, no. 5388, pp. 468–471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. M. S. Pepper, J.-D. Vassalli, L. Orci, and R. Montesano, “Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis,” Experimental Cell Research, vol. 204, no. 2, pp. 356–363, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. M. E. Gleave, J.-T. Hsieh, H.-C. Wu et al., “Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma,” Cancer Research, vol. 53, no. 21, pp. 5300–5307, 1993. View at Google Scholar · View at Scopus
  50. T. Takahashi, S. Yamaguchi, K. Chida, and M. Shibuya, “A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells,” EMBO Journal, vol. 20, no. 11, pp. 2768–2778, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. de Vries, J. A. Escobedo, H. Ueno, K. Houck, N. Ferrara, and L. T. Williams, “The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor,” Science, vol. 255, no. 5047, pp. 989–991, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. G.-H. Fong, J. Rossant, M. Gertsenstein, and M. L. Breitman, “Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium,” Nature, vol. 376, no. 6535, pp. 66–70, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Shinkaruk, M. Bayle, G. Laïn, and G. Déléris, “Vascular Endothelial Cell Growth Factor (VEGF), an emerging target for cancer chemotherapy,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 3, no. 2, pp. 95–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Gille, J. Kowalski, L. Yu et al., “A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration,” The EMBO Journal, vol. 19, no. 15, pp. 4064–4073, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Soker, S. Takashima, H. Q. Miao, G. Neufeld, and M. Klagsbrun, “Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor,” Cell, vol. 92, no. 6, pp. 735–745, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Neufeld, O. Kessler, and Y. Herzog, “The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF,” in Neuropilin: From Nervous System to Vascular and Tumor Biology, vol. 515 of Advances in Experimental Medicine and Biology, pp. 81–90, Springer, New York, NY, USA, 2002. View at Publisher · View at Google Scholar
  57. A. Sakurai, C. L. Doci, and J. S. Gutkind, “Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer,” Cell Research, vol. 22, no. 1, pp. 23–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Klagsbrun, S. Takashima, and R. Mamluk, “The role of neuropilin in vascular and tumor biology,” Advances in Experimental Medicine and Biology, vol. 515, pp. 33–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Yoshioka, K. Yoshida, H. Cui et al., “Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function,” Nature Medicine, vol. 18, no. 10, pp. 1560–1569, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. M. R. Ladomery, S. J. Harper, and D. O. Bates, “Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm,” Cancer Letters, vol. 249, no. 2, pp. 133–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Sakurai, J. Gavard, Y. Annas-Linhares et al., “Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras,” Molecular and Cellular Biology, vol. 30, no. 12, pp. 3086–3098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Fitsialos, I. Bourget, S. Augier et al., “HIF1 transcription factor regulates laminin-332 expression and keratinocyte migration,” Journal of Cell Science, vol. 121, no. 18, pp. 2992–3001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. B. L. Petrella, J. Lohi, and C. E. Brinckerhoff, “Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma,” Oncogene, vol. 24, no. 6, pp. 1043–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. J.-L. Lin, M. J. Wang, D. Lee, C.-C. Liang, and S. Lin, “Hypoxia-inducible factor-1α regulates matrix metalloproteinase-1 activity in human bone marrow-derived mesenchymal stem cells,” FEBS Letters, vol. 582, no. 17, pp. 2615–2619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. D. R. Wise, P. S. Ward, J. E. S. Shay et al., “Hypoxia promotes isocitrate dehydrogenasedependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 49, pp. 19611–19616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Petersen, T. Pufe, C. Stärke et al., “Locally applied angiogenic factors—a new therapeutic tool for meniscal repair,” Annals of Anatomy, vol. 187, no. 5-6, pp. 509–519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Liao and R. S. Johnson, “Hypoxia: a key regulator of angiogenesis in cancer,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 281–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. W. Saif, “Anti-VEGF agents in metastatic colorectal cancer (mCRC): are they all alike?” Cancer Management and Research, vol. 5, no. 1, pp. 103–115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Kalka, H. Masuda, T. Takahashi et al., “Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3422–3427, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. G. P. Fadini, S. Sartore, M. Albiero et al., “Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2140–2146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Vasa, S. Fichtlscherer, A. Aicher et al., “Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease,” Circulation research, vol. 89, no. 1, pp. E1–E7, 2001. View at Google Scholar · View at Scopus
  72. C. Schmidt-Lucke, L. Rössig, S. Fichtlscherer et al., “Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair,” Circulation, vol. 111, no. 22, pp. 2981–2987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Werner, S. Kosiol, T. Schiegl et al., “Circulating endothelial progenitor cells and cardiovascular outcomes,” The New England Journal of Medicine, vol. 353, no. 10, pp. 999–1007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Chironi, L. Walch, M.-G. Pernollet et al., “Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis,” Atherosclerosis, vol. 191, no. 1, pp. 115–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. M. B. Grant, W. S. May, S. Caballero et al., “Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization,” Nature Medicine, vol. 8, no. 6, pp. 607–612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. A. A. Kocher, M. D. Schuster, M. J. Szabolcs et al., “Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function,” Nature Medicine, vol. 7, no. 4, pp. 430–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Hur, C.-H. Yoon, H.-S. Kim et al., “Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 2, pp. 288–293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. P. de la Puente, B. Muz, F. Azab, and A. K. Azab, “Cell trafficking of endothelial progenitor cells in tumor progression,” Clinical Cancer Research, vol. 19, no. 13, pp. 3360–3368, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. J. E. Ohm and D. P. Carborne, “VEGF as a mediator of tumor-associated immunodeficiency,” Immunologic Research, vol. 23, no. 2-3, pp. 263–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. B. R. Zetter, “Angiogenesis and tumor metastasis,” Annual Review of Medicine, vol. 49, pp. 407–424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell, vol. 5, no. 1, pp. 17–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. K. B. Vartanian, S. J. Kirkpatrick, O. J. T. McCarty, T. Q. Vu, S. R. Hanson, and M. T. Hinds, “Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells,” Journal of Biomedical Materials Research Part A, vol. 91, no. 2, pp. 528–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Bu, Y. Yan, Z. Zhang et al., “Properties of extracellular matrix-like scaffolds for the growth and differentiation of endothelial progenitor cells,” Journal of Surgical Research, vol. 164, no. 1, pp. 50–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. K. K. Deeb, W. Luo, A. R. Karpf et al., “Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate,” Epigenetics, vol. 6, no. 8, pp. 994–1000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. I.-W. Teng, P.-C. Hou, K.-D. Lee et al., “Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells,” Cancer Research, vol. 71, no. 13, pp. 4653–4663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Beck, G. Driessens, S. Goossens et al., “A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours,” Nature, vol. 478, no. 7369, pp. 399–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. D. J. Nolan, A. Ciarrocchi, A. S. Mellick et al., “Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization,” Genes & Development, vol. 21, no. 12, pp. 1546–1558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Choi, M. Nguyen, D. Lee, G. Oh, and Y. Lee, “Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice,” Molecules and Cells, vol. 37, no. 6, pp. 487–496, 2014. View at Publisher · View at Google Scholar
  89. C.-C. Ling, K. T. P. Ng, Y. Shao et al., “Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth,” Journal of Hepatology, vol. 60, no. 1, pp. 103–109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. Q. Zhang, I. Kandic, J. T. Barfield, and M. J. Kutryk, “Coculture with late, but not early, human endothelial progenitor cells up regulates IL-1 β expression in THP-1 monocytic cells in a paracrine manner,” Stem Cells International, vol. 2013, Article ID 859643, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. T. Shih, M. C. Wang, J. Zhou, H. H. Peng, D. Y. Lee, and J. J. Chiu, “Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21,” Gut, 2014. View at Publisher · View at Google Scholar
  92. B. Heissig, K. Hattori, S. Dias et al., “Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand,” Cell, vol. 109, no. 5, pp. 625–637, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan et al., “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1,” Nature Medicine, vol. 10, no. 8, pp. 858–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. A. R. Watson, S. C. Pitchford, L. E. Reynolds et al., “Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization,” Journal of Pathology, vol. 220, no. 4, pp. 435–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. O. Kollet, A. Spiegel, A. Peled et al., “Rapid and efficient homing of human CD34+CD38-/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice,” Blood, vol. 97, no. 10, pp. 3283–3291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. I. Kryczek, A. Lange, P. Mottram et al., “CXCL12 and vascular endothelial growth factor synergistically induce neonaniogenisis in human ovarian cancers,” Cancer Research, vol. 65, no. 2, pp. 465–472, 2005. View at Google Scholar · View at Scopus
  97. E. S. Wijelath, J. Murray, S. Rahman et al., “Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity,” Circulation Research, vol. 91, no. 1, pp. 25–31, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. S. L. Bowers, C. X. Meng, M. T. Davis, and G. E. Davis, “Investigating human vascular tube morphogenesis and maturation using endothelial cell-pericyte co-cultures and a doxycycline-inducible genetic system in 3D extracellular matrices,” Methods in Molecular Biology, vol. 1189, pp. 171–189, 2015. View at Google Scholar
  99. A. Laurenzana, A. Biagioni, S. D'Alessio et al., “Melanoma cell therapy: endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme,” Oncotarget, vol. 5, no. 11, pp. 3711–3727, 2014. View at Google Scholar
  100. Y. I. Purwanti, C. Chen, D. H. Lam et al., “Antitumor effects of CD40 ligand-expressing endothelial progenitor cells derived from human induced pluripotent stem cells in a metastatic breast cancer model,” Stem Cells Translational Medicine, vol. 3, no. 8, pp. 923–935, 2014. View at Publisher · View at Google Scholar
  101. J.-X. Zhang, C.-S. Kang, L. Shi, P. Zhao, N. Liu, and Y.-P. You, “Use of thymidine kinase gene-modified endothelial progenitor cells as a vector targeting angiogenesis in glioma gene therapy,” Oncology, vol. 78, no. 2, pp. 94–102, 2010. View at Publisher · View at Google Scholar · View at Scopus