Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016 (2016), Article ID 3196071, 10 pages
http://dx.doi.org/10.1155/2016/3196071
Research Article

BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation

1College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, China
2Emergency Department of Cardiology, The Second People’s Hospital of Jining, Shandong 272000, China

Received 7 July 2015; Revised 4 November 2015; Accepted 5 November 2015

Academic Editor: Christian Dani

Copyright © 2016 Y. Wendan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yoshikawa, K. Nakamura, S. Nagase et al., “Effects of combined treatment with angiotensin II type 1 receptor blocker and statin on stent restenosis,” Journal of Cardiovascular Pharmacology, vol. 53, no. 2, pp. 179–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. M. Siow, C. M. Mallawaarachchi, and P. L. Weissberg, “Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries,” Cardiovascular Research, vol. 59, no. 1, pp. 212–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Xu, J. Ji, L. Li, R. Chen, and W. Hu, “Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the ‘Response-to-Injury Hypothesis’ and the ‘Inflammation Hypothesis’,” Medical Hypotheses, vol. 69, no. 4, pp. 908–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Xu, J. Ji, L. Li, R. Chen, and W.-C. Hu, “Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse,” Biochemical and Biophysical Research Communications, vol. 352, no. 3, pp. 681–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. M. Siow and A. T. Churchman, “Adventitial growth factor signalling and vascular remodelling: potential of perivascular gene transfer from the outside-in,” Cardiovascular Research, vol. 75, no. 4, pp. 659–668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Dobaczewski, W. Chen, and N. G. Frangogiannis, “Transforming growth factor (TGF)-β signaling in cardiac remodeling,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 4, pp. 600–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. M. Caplice, T. J. Bunch, P. G. Stalboerger et al., “Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4754–4759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Xu, “Stem cells and transplant arteriosclerosis,” Circulation Research, vol. 102, no. 9, pp. 1011–1024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sata, A. Saiura, A. Kunisato et al., “Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis,” Nature Medicine, vol. 8, no. 4, pp. 403–409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Guo, B. Shan, R. C. Klingsberg, X. Qin, and J. A. Lasky, “Abrogation of TGF-β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 5, pp. L864–L870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Hu and Q. Xu, “Adventitial biology: differentiation and function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, pp. 1523–1529, 2011. View at Google Scholar
  12. M. Abedin, Y. Tintut, and L. L. Demer, “Mesenchymal stem cells and the artery wall,” Circulation Research, vol. 95, no. 7, pp. 671–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Hoshino, H. Chiba, K. Nagai, G. Ishii, and A. Ochiai, “Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells,” Biochemical and Biophysical Research Communications, vol. 368, no. 2, pp. 305–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Xu, “Progenitor cells in vascular repair,” Current Opinion in Lipidology, vol. 18, no. 5, pp. 534–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Torsney and Q. Xu, “Resident vascular progenitor cells,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 2, pp. 304–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Wu, L. Huang, Q. Zhou et al., “Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth,” International Journal of Cardiology, vol. 105, no. 3, pp. 274–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Rinkevich, T. Mori, D. Sahoo, P.-X. Xu, J. R. Bermingham Jr., and I. L. Weissman, “Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature,” Nature Cell Biology, vol. 14, no. 12, pp. 1251–1260, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. W. D. Yuan, W. Liu, J. M. Li et al., “Effects of BMSCs interactions with adventitial fibroblasts in transdifferentiation and ultrastructure processes,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 7, pp. 3957–3965, 2014. View at Google Scholar · View at Scopus
  20. X.-Q. Chen, L.-L. Chen, L. Fan, J. Fang, Z.-Y. Chen, and W.-W. Li, “Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats,” Biochemical and Biophysical Research Communications, vol. 447, no. 1, pp. 145–151, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Cheng, Y. Wang, A. Liang, L. Jia, and J. Du, “FSP-1 silencing in bone marrow cells suppresses neointima formation in vein graft,” Circulation Research, vol. 110, no. 2, pp. 230–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Windmolders, A. De Boeck, R. Koninckx et al., “Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident cardiac atrial appendage stem cells,” Journal of Molecular and Cellular Cardiology, vol. 66, pp. 177–188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. S. T. Ryan, V. E. Koteliansky, P. J. Gotwals, and V. Lindner, “Transforming growth factor-beta-dependent events in vascular remodeling following arterial injury,” Journal of Vascular Research, vol. 40, no. 1, pp. 37–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. W. D. Yuan, D. X. Yang, X. H. Sun et al., “Effects of hydroxysafflor yellow A on proliferation and collagen synthesis of rat vascular adventitial fibroblasts induced by angiotensin II,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 9, pp. 5772–5781, 2014. View at Google Scholar · View at Scopus
  25. H. Zhang, Z.-W. Wang, H.-B. Wu et al., “Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK-NF-κB pathways,” Molecular and Cellular Biochemistry, vol. 375, no. 1, pp. 11–21, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Liu, C. Zhang, J. B. Feng et al., “Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-β1 and inhibited by Gax,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 725–731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Wang, X. R. Huang, E. Canlas et al., “Essential role of Smad3 in angiotensin II–induced vascular fibrosis,” Circulation Research, vol. 98, no. 8, pp. 1032–1039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. W.-M. Yue, W. Liu, Y.-W. Bi et al., “Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model,” Stem Cells and Development, vol. 17, no. 4, pp. 785–793, 2008. View at Publisher · View at Google Scholar · View at Scopus