Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016 (2016), Article ID 8340257, 14 pages
http://dx.doi.org/10.1155/2016/8340257
Review Article

Pivotal Cytoprotective Mediators and Promising Therapeutic Strategies for Endothelial Progenitor Cell-Based Cardiovascular Regeneration

1Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea
2Laboratory of Cardiovascular Regeneration, Division of Cardiovascular Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea

Received 15 August 2016; Revised 11 October 2016; Accepted 27 October 2016

Academic Editor: Michael Lichtenauer

Copyright © 2016 Hyunyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Ludwig, M. A. Pereira, C. H. Kroenke et al., “Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1539–1546, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. WHO, Diet, Nutrition and the Prevention of Chronic Diseases, WHO Technical Report Series, WHO, Geneva, Switzerland, 2003.
  3. S. Kanzler, C. Hartmann, A. Gruber, G. Lammer, and K.-H. Wagner, “Salt as a public health challenge in continental European convenience and ready meals,” Public Health Nutrition, vol. 17, no. 11, pp. 2459–2466, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Oh, F. B. Hu, J. E. Manson, M. J. Stampfer, and W. C. Willett, “Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses' health study,” American Journal of Epidemiology, vol. 161, no. 7, pp. 672–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. V. Howard and J. Wylie-Rosett, “Sugar and cardiovascular disease: a statement for healthcare professionals from the committee on nutrition of the council on nutrition, physical activity, and metabolism of the american heart association,” Circulation, vol. 106, no. 4, pp. 523–527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. G. Guyenet, “The sympathetic control of blood pressure,” Nature Reviews Neuroscience, vol. 7, no. 5, pp. 335–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Abrams, “Chronic stable angina,” The New England Journal of Medicine, vol. 352, no. 24, pp. 2524–2533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Thygesen, J. S. Alpert, A. S. Jaffe, M. L. Simoons, B. R. Chaitman, and H. D. White, “Third universal definition of myocardial infarction,” Nature Reviews Cardiology, vol. 9, no. 11, pp. 620–633, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. B. P. Delisle, B. D. Anson, S. Rajamani, and C. T. January, “Biology of cardiac arrhythmias: ion channel protein trafficking,” Circulation Research, vol. 94, no. 11, pp. 1418–1428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Sowers, M. Epstein, and E. D. Frohlich, “Diabetes, hypertension, and cardiovascular disease an update,” Hypertension, vol. 37, no. 4, pp. 1053–1059, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. T. Giacobbe and M. J. Murray, “Vascular disease and inflammation,” Anesthesiology Clinics of North America, vol. 22, no. 2, pp. 183–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Bentzon, F. Otsuka, R. Virmani, and E. Falk, “Mechanisms of plaque formation and rupture,” Circulation Research, vol. 114, no. 12, pp. 1852–1866, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Tabas, G. García-Cardeña, and G. K. Owens, “Recent insights into the cellular biology of atherosclerosis,” Journal of Cell Biology, vol. 209, no. 1, pp. 13–22, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. E. G. Nabel, “Cardiovascular disease,” The New England Journal of Medicine, vol. 349, no. 1, pp. 60–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Smart and P. R. Riley, “The stem cell movement,” Circulation Research, vol. 102, no. 10, pp. 1155–1168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. C. Rennert, M. Sorkin, R. K. Garg, and G. C. Gurtner, “Stem cell recruitment after injury: lessons for regenerative medicine,” Regenerative Medicine, vol. 7, no. 6, pp. 833–850, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Tilling, P. Chowienczyk, and B. Clapp, “Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells,” British Journal of Clinical Pharmacology, vol. 68, no. 4, pp. 484–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Huang, F. Wang, Y. Wang et al., “Acidic fibroblast growth factor promotes endothelial progenitor cells function via Akt/FOXO3α pathway,” PLoS ONE, vol. 10, no. 6, Article ID e0129665, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Caiado and S. Dias, “Endothelial progenitor cells and integrins: adhesive needs,” Fibrogenesis & Tissue Repair, vol. 5 article 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. P. Yu, Z. Wei, and L. Wei, “Preconditioning strategy in stem cell transplantation therapy,” Translational Stroke Research, vol. 4, no. 1, pp. 76–88, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Goff, “Host factors exploited by retroviruses,” Nature Reviews Microbiology, vol. 5, no. 4, pp. 253–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Sakuma, M. A. Barry, and Y. Ikeda, “Lentiviral vectors: basic to translational,” Biochemical Journal, vol. 443, no. 3, pp. 603–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Daya and K. I. Berns, “Gene therapy using adeno-associated virus vectors,” Clinical Microbiology Reviews, vol. 21, no. 4, pp. 583–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Zigdon-Giladi, T. Bick, D. Lewinson, and E. E. Machtei, “Co-transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration,” Clinical Implant Dentistry and Related Research, vol. 17, no. 2, pp. 353–359, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kang, H. S. Park, A. Jo et al., “Endothelial progenitor cell cotransplantation enhances islet engraftment by rapid revascularization,” Diabetes, vol. 61, no. 4, pp. 866–876, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. B. B. Ratliff, T. Ghaly, P. Brudnicki et al., “Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent,” American Journal of Physiology - Renal Physiology, vol. 299, no. 1, pp. F178–F186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Hinderer, S. L. Layland, and K. Schenke-Layland, “ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy,” Advanced Drug Delivery Reviews, vol. 97, pp. 260–269, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Asahara, T. Takahashi, H. Masuda et al., “VEGF contributes to postnatal neovascularization by mobilizing bone marrow‐derived endothelial progenitor cells,” EMBO Journal, vol. 18, no. 14, pp. 3964–3972, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Peichev, A. J. Naiyer, D. Pereira et al., “Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors,” Blood, vol. 95, no. 3, pp. 952–958, 2000. View at Google Scholar · View at Scopus
  31. Y.-N. Liu, J. Zhang, Q.-H. He, X. Dai, and L. Shen, “Isolation and characterization of epithelial progenitor cells from human fetal liver,” Hepatology Research, vol. 38, no. 1, pp. 103–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Tamaki, A. Akatsuka, K. Ando et al., “Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle,” Journal of Cell Biology, vol. 157, no. 4, pp. 571–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Aicher, A. M. Zeiher, and S. Dimmeler, “Mobilizing endothelial progenitor cells,” Hypertension, vol. 45, no. 3, pp. 321–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Werner and G. Nickenig, “Clinical and therapeutical implications of EPC biology in atherosclerosis,” Journal of Cellular and Molecular Medicine, vol. 10, no. 2, pp. 318–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Taghavi and J. C. George, “Homing of stem cells to ischemic myocardium,” American Journal of Translational Research, vol. 5, no. 4, pp. 404–411, 2013. View at Google Scholar · View at Scopus
  36. V. W. Wong and J. D. Crawford, “Vasculogenic cytokines in wound healing,” BioMed Research International, vol. 2013, Article ID 190486, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. G. O. Ouma, B. Zafrir, E. R. Mohler, and M. Y. Flugelman, “Therapeutic angiogenesis in critical limb Ischemia,” Angiology, vol. 64, no. 6, pp. 466–480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Furuya, M. Nishiyama, Y. Kasuya, S. Kimura, and H. Ishikura, “Pathophysiology of tumor neovascularization,” Vascular Health and Risk Management, vol. 1, no. 4, pp. 277–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. S. Krause, M. J. Fackler, C. I. Civin, and W. S. May, “CD34: structure, biology, and clinical utility,” Blood, vol. 87, no. 1, pp. 1–13, 1996. View at Google Scholar · View at Scopus
  40. C. Urbich and S. Dimmeler, “Endothelial progenitor cells: functional characterization,” Trends in Cardiovascular Medicine, vol. 14, no. 8, pp. 318–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A.-K. Olsson, A. Dimberg, J. Kreuger, and L. Claesson-Welsh, “VEGF receptor signalling—in control of vascular function,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 359–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Mizrak, M. Brittan, and M. R. Alison, “CD133: molecule of the moment,” Journal of Pathology, vol. 214, no. 1, pp. 3–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. C. Yoder, “Human endothelial progenitor cells,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 7, Article ID a006692, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hristov, W. Erl, and P. C. Weber, “Endothelial progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1185–1189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Lin, D. J. Weisdorf, A. Solovey, and R. P. Hebbel, “Origins of circulating endothelial cells and endothelial outgrowth from blood,” Journal of Clinical Investigation, vol. 105, no. 1, pp. 71–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Shi, S. Rafii, M. Wu Hong-De et al., “Evidence for circulating bone marrow-derived endothelial cells,” Blood, vol. 92, no. 2, pp. 362–367, 1998. View at Google Scholar · View at Scopus
  47. C. Schmidt-Lucke, L. Rössig, S. Fichtlscherer et al., “Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair,” Circulation, vol. 111, no. 22, pp. 2981–2987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. K. E. Jie, M. R. Lilien, M. H. J. Goossens, P. E. Westerweel, M. Klein, and M. C. Verhaar, “Reduced endothelial progenitor cells in children with hemodialysis but not predialysis chronic kidney disease,” Pediatrics, vol. 126, no. 4, p. 3346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. S. Levey and J. Coresh, “Chronic kidney disease,” The Lancet, vol. 379, no. 9811, pp. 165–180, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Herbrig, F. Pistrosch, S. Foerster, and P. Gross, “Endothelial progenitor cells in chronic renal insufficiency,” Kidney and Blood Pressure Research, vol. 29, no. 1, pp. 24–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Eizawa, U. Ikeda, Y. Murakami et al., “Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease,” Heart, vol. 90, no. 6, pp. 685–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. L. Hermiston, Z. Xu, and A. Weiss, “CD45: a critical regulator of signaling thresholds in immune cells,” Annual Review of Immunology, vol. 21, pp. 107–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Fischer, M. Mazzone, B. Jonckx, and P. Carmeliet, “FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?” Nature Reviews Cancer, vol. 8, no. 12, pp. 942–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. D. M. Dudzinski and T. Michel, “Life history of eNOS: partners and pathways,” Cardiovascular Research, vol. 75, no. 2, pp. 247–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. P. J. Lenting, C. Casari, O. D. Christophe, and C. V. Denis, “von Willebrand factor: the old, the new and the unknown,” Journal of Thrombosis and Haemostasis, vol. 10, no. 12, pp. 2428–2437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Woodfin, M.-B. Voisin, and S. Nourshargh, “PECAM-1: a multi-functional molecule in inflammation and vascular biology,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2514–2523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Baudin, A. Bruneel, N. Bosselut, and M. Vaubourdolle, “A protocol for isolation and culture of human umbilical vein endothelial cells,” Nature Protocols, vol. 2, no. 3, pp. 481–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H. W. L. Ziegler-Heitbrock and R. J. Ulevitch, “CD14: cell surface receptor and differentiation marker,” Immunology Today, vol. 14, no. 3, pp. 121–125, 1993. View at Publisher · View at Google Scholar · View at Scopus
  61. T. J. Povsic, K. L. Zavodni, E. Vainorius, J. F. Kherani, P. J. Goldschmidt-Clermont, and E. D. Peterson, “Common endothelial progenitor cell assays identify discrete endothelial progenitor cell populations,” American Heart Journal, vol. 157, no. 2, pp. 335–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Harada, N. Sekido, T. Akahoshi, T. Wada, N. Mukaida, and K. Matsushima, “Essential involvement of interleukin-8 (IL-8) in acute inflammation,” Journal of Leukocyte Biology, vol. 56, no. 5, pp. 559–564, 1994. View at Google Scholar · View at Scopus
  63. C. J. Eaves, “Hematopoietic stem cells: concepts, definitions, and the new reality,” Blood, vol. 125, no. 17, pp. 2605–2613, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. S.-M. Kwon, Y.-K. Lee, A. Yokoyama et al., “Differential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularization,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 3, pp. 308–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. L. K. Ashman, “The biology of stem cell factor and its receptor C-kit,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 10, pp. 1037–1051, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Gulati, D. Jevremovic, T. E. Peterson et al., “Diverse origin and function of cells with endothelial phenotype obtained from adult human blood,” Circulation Research, vol. 93, no. 11, pp. 1023–1025, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Holmes and W. L. Stanford, “Concise review: stem cell antigen-1: expression, function, and enigma,” Stem Cells, vol. 25, no. 6, pp. 1339–1347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. E. Grove, E. Bruscia, and D. S. Krause, “Plasticity of bone marrow-derived stem cells,” Stem Cells, vol. 22, no. 4, pp. 487–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Yin and L. Li, “The stem cell niches in bone,” The Journal of Clinical Investigation, vol. 116, no. 5, pp. 1195–1201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. P. L. Doan and J. P. Chute, “The vascular niche: home for normal and malignant hematopoietic stem cells,” Leukemia, vol. 26, no. 1, pp. 54–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. H.-G. Kopp, S. T. Avecilla, A. T. Hooper, and S. Rafii, “The bone marrow vascular niche: home of HSC differentiation and mobilization,” Physiology, vol. 20, no. 5, pp. 349–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Arai, A. Hirao, M. Ohmura et al., “Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche,” Cell, vol. 118, no. 2, pp. 149–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. J.-P. Lévesque, F. M. Helwani, and I. G. Winkler, “The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization,” Leukemia, vol. 24, no. 12, pp. 1979–1992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Itkin and T. Lapidot, “SDF-1 keeps HSC quiescent at home,” Blood, vol. 117, no. 2, pp. 373–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. M. Weber and L. M. Calvi, “Notch signaling and the bone marrow hematopoietic stem cell niche,” Bone, vol. 46, no. 2, pp. 281–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. R. E. Verloop, P. Koolwijk, A. J. Van Zonneveld, and V. W. M. Van Hinsbergh, “Proteases and receptors in the recruitment of endothelial progenitor cells in neovascularization,” European Cytokine Network, vol. 20, no. 4, pp. 207–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Heissig, K. Hattori, S. Dias et al., “Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand,” Cell, vol. 109, no. 5, pp. 625–637, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. J. S. Mumm and R. Kopan, “Notch signaling: from the outside in,” Developmental Biology, vol. 228, no. 2, pp. 151–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Chiba, “Concise review: notch signaling in stem cell systems,” Stem Cells, vol. 24, no. 11, pp. 2437–2447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. S.-M. Kwon, M. Eguchi, M. Wada et al., “Specific jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization,” Circulation, vol. 118, no. 2, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. J. C. Mancini, N. Mantei, A. Dumortier, U. Suter, H. R. MacDonald, and F. Radtke, “Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation,” Blood, vol. 105, no. 6, pp. 2340–2342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Takaki, K. Sauer, B. M. Iritani et al., “Control of B cell production by the adaptor protein Lnk: definition of a conserved family of signal-modulating proteins,” Immunity, vol. 13, no. 5, pp. 599–609, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Ema, K. Sudo, J. Seita et al., “Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice,” Developmental Cell, vol. 8, no. 6, pp. 907–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. S.-M. Kwon, T. Suzuki, A. Kawamoto et al., “Pivotal role of lnk adaptor protein in endothelial progenitor cell biology for vascular regeneration,” Circulation Research, vol. 104, no. 8, pp. 969–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Takahashi, C. Kalka, H. Masuda et al., “Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization,” Nature Medicine, vol. 5, no. 4, pp. 434–438, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. R. K. Root and D. C. Dale, “Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: comparisons and potential for use in the treatment of infections in nonneutropenic patients,” Journal of Infectious Diseases, vol. 179, no. 2, pp. S342–S352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Fan, J. Ye, F. Shen et al., “Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 1, pp. 90–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. L. M. Ellis and D. J. Hicklin, “VEGF-targeted therapy: mechanisms of anti-tumour activity,” Nature Reviews Cancer, vol. 8, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. Q. Ke and M. Costa, “Hypoxia-inducible factor-1 (HIF-1),” Molecular Pharmacology, vol. 70, no. 5, pp. 1469–1480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. A. Forsythe, B.-H. Jiang, N. V. Iyer et al., “Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1,” Molecular and Cellular Biology, vol. 16, no. 9, pp. 4604–4613, 1996. View at Publisher · View at Google Scholar · View at Scopus
  91. P. De La Puente, B. Muz, F. Azab, and A. K. Azab, “Cell trafficking of endothelial progenitor cells in tumor progression,” Clinical Cancer Research, vol. 19, no. 13, pp. 3360–3368, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. R. N. Kaplan, B. Psaila, and D. Lyden, “Niche-to-niche migration of bone-marrow-derived cells,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 72–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. A. T. Askari, S. Unzek, Z. B. Popovic et al., “Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy,” The Lancet, vol. 362, no. 9385, pp. 697–703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. Y.-F. Li, L.-N. Ren, G. Guo et al., “Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy,” Journal of Hematology and Oncology, vol. 8, article 33, 2015. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Cencioni, M. C. Capogrossi, and M. Napolitano, “The SDF-1/CXCR4 axis in stem cell preconditioning,” Cardiovascular Research, vol. 94, no. 3, pp. 400–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. T. K. Ho, X. Shiwen, D. Abraham, J. Tsui, and D. Baker, “Stromal-cell-derived factor-1 (SDF-1)/CXCL12 as potential target of therapeutic angiogenesis in critical leg ischaemia,” Cardiology Research and Practice, vol. 2012, Article ID 143209, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. T.-J. Lin, T. B. Issekutz, and J. S. Marshall, “SDF-1 induces IL-8 production and transendothelial migration of human cord blood-derived mast cells,” International Archives of Allergy and Immunology, vol. 124, no. 1–3, pp. 142–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Pi, Y. Wu, J. E. Ferguson III, A. L. Portbury, and C. Patterson, “SDF-1α stimulates JNK3 activity via eNOS-dependent nitrosylation of MKP7 to enhance endothelial migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5675–5680, 2009. View at Publisher · View at Google Scholar
  99. Y. Takabatake, T. Sugiyama, H. Kohara et al., “The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1714–1723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Urbich and S. Dimmeler, “Endothelial progenitor cells: characterization and role in vascular biology,” Circulation Research, vol. 95, no. 4, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Galkina and K. Ley, “Vascular adhesion molecules in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2292–2301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. I.-Y. Oh, C.-H. Yoon, J. Hur et al., “Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle,” Blood, vol. 110, no. 12, pp. 3891–3899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Wu, J. E. Ip, J. Huang et al., “Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium,” Circulation Research, vol. 99, no. 3, pp. 315–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. M. D. Silverman, C. S. Haas, A. M. Rad, A. S. Arbab, and A. E. Koch, “The role of vascular cell adhesion molecule 1/very late activation antigen 4 in endothelial progenitor cell recruitment to rheumatoid arthritis synovium,” Arthritis and Rheumatism, vol. 56, no. 6, pp. 1817–1826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. P.-H. Huang, Y.-H. Chen, C.-H. Wang et al., “Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor Cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 8, pp. 1179–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Urbich, C. Heeschen, A. Aicher et al., “Cathepsin L is required for endothelial progenitor cell–induced neovascularization,” Nature Medicine, vol. 11, no. 2, pp. 206–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Fujiyama, K. Amano, K. Uehira et al., “Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells,” Circulation Research, vol. 93, no. 10, pp. 980–989, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. D. H. Walter, K. Rittig, F. H. Bahlmann et al., “Statin therapy accelerates reendothelialization,” Circulation, vol. 105, no. 25, pp. 3017–3024, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Li, X. Chen, W. E. Wang, and C. Zeng, “How to improve the survival of transplanted mesenchymal stem cell in ischemic heart?” Stem Cells International, vol. 2016, Article ID 9682757, 14 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  110. I. Shiojima and K. Walsh, “Role of Akt signaling in vascular homeostasis and angiogenesis,” Circulation Research, vol. 90, no. 12, pp. 1243–1250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Hur, C.-H. Yoon, C.-S. Lee et al., “Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle,” Stem Cells, vol. 25, no. 7, pp. 1769–1778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. N. R. Madamanchi, A. Vendrov, and M. S. Runge, “Oxidative stress and vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 1, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. Q. Zhang, L. Chen, Z. Si et al., “Probucol protects endothelial progenitor cells against oxidized low-density lipoprotein via suppression of reactive oxygen species formation in vivo,” Cellular Physiology and Biochemistry, vol. 39, no. 1, pp. 89–101, 2016. View at Publisher · View at Google Scholar
  114. K. M. Malinda, G. S. Sidhu, H. Mani et al., “Thymosin β4 accelerates wound healing,” Journal of Investigative Dermatology, vol. 113, no. 3, pp. 364–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Smart, S. Bollini, K. N. Dubé et al., “De novo cardiomyocytes from within the activated adult heart after injury,” Nature, vol. 474, no. 7353, pp. 640–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. F.-Y. Qiu, X.-X. Song, H. Zheng, Y.-B. Zhao, and G.-S. Fu, “Thymosin β4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway,” Journal of Cardiovascular Pharmacology, vol. 53, no. 3, pp. 209–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. U. Stenestrand and L. Wallentin, “Early statin treatment following acute myocardial infarction and 1-year survival,” Journal of the American Medical Association, vol. 285, no. 4, pp. 430–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Kjekshus, T. R. Pedersen, A. G. Olsson, O. Faergeman, and K. Pyorala, “The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease,” Journal of Cardiac Failure, vol. 3, no. 4, pp. 249–254, 1997. View at Publisher · View at Google Scholar
  119. M. D. I. Vergouwen, R. J. De Haan, M. Vermeulen, and Y. B. W. E. M. Roos, “Effect of statin treatment on vasospasm, delayed cerebral ischemia, and functional outcome in patients with aneurysmal subarachnoid hemorrhage,” Stroke, vol. 41, no. 1, pp. e47–e52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Buse, “Statin treatment in diabetes mellitus,” Clinical Diabetes, vol. 21, no. 4, pp. 168–172, 2003. View at Publisher · View at Google Scholar
  121. M. P. Schneider, B. M. Schmidt, S. John, and R. E. Schmieder, “Effects of statin treatment on endothelial function, oxidative stress and inflammation in patients with arterial hypertension and normal cholesterol levels,” Journal of Hypertension, vol. 29, no. 9, pp. 1757–1764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Vasa, S. Fichtlscherer, K. Adler et al., “Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease,” Circulation, vol. 103, no. 24, pp. 2885–2890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Szabõ, “Hydrogen sulphide and its therapeutic potential,” Nature Reviews Drug Discovery, vol. 6, no. 11, pp. 917–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. D.-D. C. Fang Liu, X. Sun, H.-H. Xie, H. Yuan, W. Jia, and A. F. Chen, “Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes,” Diabetes, vol. 63, no. 5, pp. 1763–1778, 2014. View at Publisher · View at Google Scholar
  125. Z. Gu, M. Kaul, B. Yan et al., “S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death,” Science, vol. 297, no. 5584, pp. 1186–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. K. J. Hurt, B. Musicki, M. A. Palese et al., “Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 4061–4066, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. K.-E. Andersson, “Pharmacology of penile erection,” Pharmacological Reviews, vol. 53, no. 3, pp. 417–450, 2001. View at Google Scholar · View at Scopus
  128. K. L. March and B. H. Johnstone, “Cellular approaches to tissue repair in cardiovascular disease: the more we know, the more there is to learn,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 287, no. 2, pp. H458–H463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. B. Glotzbecker, C. Duncan, E. Alyea III, B. Campbell, and R. Soiffer, “Important drug interactions in hematopoietic stem cell transplantation: what every physician should know,” Biology of Blood and Marrow Transplantation, vol. 18, no. 7, pp. 989–1006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. J. L. Herrmann, Y. Wang, A. M. Abarbanell, B. R. Weil, J. Tan, and D. R. Meldrum, “Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection,” Shock, vol. 33, no. 1, pp. 24–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. Q. Gu, C. Chen, Z. Zhang et al., “Ginkgo biloba extract promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in a pathway involving Wnt/β-catenin signaling,” Pharmacological Research, vol. 97, pp. 70–78, 2015. View at Publisher · View at Google Scholar · View at Scopus
  132. H. K. Haider and M. Ashraf, “Preconditioning and stem cell survival,” Journal of Cardiovascular Translational Research, vol. 3, no. 2, pp. 89–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. A. V. Skriptsova, “Fucoidans of brown algae: biosynthesis, localization, and physiological role in Thallus,” Russian Journal of Marine Biology, vol. 41, no. 3, pp. 145–156, 2015. View at Publisher · View at Google Scholar · View at Scopus
  134. S.-B. Park, K.-R. Chun, J.-K. Kim, K. Suk, Y.-M. Jung, and W.-H. Lee, “The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice,” Phytotherapy Research, vol. 24, no. 9, pp. 1384–1391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. H.-J. Boo, J.-Y. Hong, S.-C. Kim et al., “The anticancer effect of fucoidan in PC-3 prostate cancer cells,” Marine Drugs, vol. 11, no. 8, pp. 2982–2999, 2013. View at Publisher · View at Google Scholar · View at Scopus
  136. M.-J. Kim, J. Jeon, and J.-S. Lee, “Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation,” Phytotherapy Research, vol. 28, no. 1, pp. 137–143, 2014. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Bojakowski, P. Abramczyk, M. Bojakowska, A. Zwolińska, J. Przybylski, and Z. Gaciong, “Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat,” Journal of Physiology and Pharmacology, vol. 52, no. 1, pp. 137–143, 2001. View at Google Scholar · View at Scopus
  138. S.-W. Hong, H.-S. Lee, K. H. Jung, H. Lee, and S.-S. Hong, “Protective effect of fucoidan against acetaminophen-induced liver injury,” Archives of Pharmacal Research, vol. 35, no. 6, pp. 1099–1105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. J. H. Lee, S. H. Lee, S. H. Choi, T. Asahara, and S.-M. Kwon, “The sulfated polysaccharide fucoidan rescues senescence of endothelial colony-forming cells for ischemic repair,” Stem Cells, vol. 33, no. 6, pp. 1939–1951, 2015. View at Publisher · View at Google Scholar · View at Scopus
  140. W.-Y. Lee, H.-Y. Chen, K.-C. Chen, and C. Y.-C. Chen, “Treatment of rheumatoid arthritis with traditional Chinese medicine,” BioMed Research International, vol. 2014, Article ID 528018, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Ji, J. Li, Z. Wei et al., “Effect of celastrol on growth inhibition of prostate cancer cells through the regulation of hERG channel in vitro,” BioMed Research International, vol. 2015, Article ID 308475, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Trott, J. D. West, L. Klaić et al., “Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 1104–1112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. B. Astry, S. H. Venkatesha, A. Laurence et al., “Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ,” Clinical Immunology, vol. 157, no. 2, pp. 228–238, 2015. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Lu, X. Yu, K. Zuo et al., “Tripterine treatment improves endothelial progenitor cell function via integrin-linked kinase,” Cellular Physiology and Biochemistry, vol. 37, no. 3, pp. 1089–1103, 2015. View at Publisher · View at Google Scholar
  145. W. Douglas and J. M. I. Losordo, “Estrogen and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, pp. 6–12, 2001. View at Publisher · View at Google Scholar
  146. L. M. Walter, P. A. W. Rogers, and J. E. Girling, “The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice,” Reproduction, vol. 129, no. 6, pp. 765–777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Fishman, J. B. Brown, L. Hellman, B. Zumoff, and T. F. Gallagher, “Estrogen metabolism in normal and pregnant women,” The Journal of biological chemistry, vol. 237, pp. 1489–1494, 1962. View at Google Scholar · View at Scopus
  148. Y. Matsubara and K. Matsubara, “Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation,” Reproductive Biology and Endocrinology, vol. 10, article no. 2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. X. Zhao, L. Huang, Y. Yin, Y. Fang, J. Zhao, and J. Chen, “Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways,” Microvascular Research, vol. 75, no. 1, pp. 45–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. T. Imanishi, T. Hano, and I. Nishio, “Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity,” Journal of Hypertension, vol. 23, no. 9, pp. 1699–1706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. X.-B. Wang, J. Huang, J.-G. Zou et al., “Effects of resveratrol on number and activity of endothelial progenitor cells from human peripheral blood,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 11, pp. 1109–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Jeandet, “Phytoalexins: current progress and future prospects,” Molecules, vol. 20, no. 2, pp. 2770–2774, 2015. View at Publisher · View at Google Scholar · View at Scopus
  153. B. D. Gehm, J. M. McAndrews, P.-Y. Chien, and J. L. Jameson, “Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 14138–14143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  154. T. Wallerath, G. Deckert, T. Ternes et al., “Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 13, pp. 1652–1658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. S. H. Lee, J. H. Lee, T. Asahara et al., “Genistein promotes Endothelial Colony-Forming Cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction,” PLoS ONE, vol. 9, no. 5, Article ID e96155, 2014. View at Publisher · View at Google Scholar
  156. M. Donoghue, F. Hsieh, E. Baronas et al., “A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9,” Circulation research, vol. 87, no. 5, pp. E1–E9, 2000. View at Google Scholar · View at Scopus
  157. J. A. Stewart, E. Lazartigues, and P. A. Lucchesi, “The angiotensin converting enzyme 2/Ang-(1-7) axis in the heart: a role for mas communication?” Circulation Research, vol. 103, no. 11, pp. 1197–1199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Soro-Paavonen, D. Gordin, C. Forsblom et al., “Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications,” Journal of Hypertension, vol. 30, no. 2, pp. 375–383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Chen, X. Xiao, S. Chen et al., “Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy,” Hypertension, vol. 61, no. 3, pp. 681–689, 2013. View at Publisher · View at Google Scholar · View at Scopus
  160. F. Fleissner and T. Thum, “The IGF-1 receptor as a therapeutic target to improve endothelial progenitor cell function,” Molecular Medicine, vol. 14, no. 5-6, pp. 235–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Sen, J. Merchan, J. Dean et al., “Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction,” Human Gene Therapy, vol. 21, no. 10, pp. 1327–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Widmaier, E. Rognoni, K. Radovanac, S. B. Azimifar, and R. Fässler, “Integrin-linked kinase at a glance,” Journal of Cell Science, vol. 125, no. 8, pp. 1839–1843, 2012. View at Publisher · View at Google Scholar · View at Scopus
  163. F. Wang, Y. Wang, L. Zhang, and L. Zou, “Gene modification with integrin-linked kinase improves function of endothelial progenitor cells in pre-eclampsia in vitro,” Journal of Cellular Biochemistry, vol. 112, no. 11, pp. 3103–3111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. J. H. Lee, S. H. Lee, S. Y. Yoo, T. Asahara, and S.-M. Kwon, “CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 7, pp. 1622–1634, 2013. View at Publisher · View at Google Scholar · View at Scopus
  165. D. J. Sieg, C. R. Hauck, and D. D. Schlaepfer, “Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration,” Journal of Cell Science, vol. 112, no. 16, pp. 2677–2691, 1999. View at Google Scholar · View at Scopus
  166. H. Zigdon-Giladi, T. Bick, D. Lewinson, and E. E. Machtei, “Co-Transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration,” Clinical Implant Dentistry and Related Research, vol. 17, no. 2, pp. 353–359, 2013. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Yang, Y. Kang, C. Browne, T. Jiang, and Y. Yang, “Graded porous β-tricalcium phosphate scaffolds enhance bone regeneration in mandible augmentation,” Journal of Craniofacial Surgery, vol. 26, no. 2, pp. e148–e153, 2015. View at Publisher · View at Google Scholar · View at Scopus
  168. M. L. Graham, J. L. Janecek, J. A. Kittredge, B. J. Hering, and H.-J. Schuurman, “The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources,” Comparative Medicine, vol. 61, no. 4, pp. 356–360, 2011. View at Google Scholar · View at Scopus
  169. L. C. Perlmuter, B. P. Flanagan, P. H. Shah, and S. P. Singh, “Glycemic control and hypoglycemia,” Diabetes Care, vol. 31, no. 10, pp. 2072–2076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Ilgun, J. W. Kim, and L. Luo, “Adult stem cells and diabetes therapy,” Journal of Stem Cell Research and Transplantation, vol. 2, no. 2, article 1020, 2015. View at Google Scholar
  171. M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, “Paracrine mechanisms in adult stem cell signaling and therapy,” Circulation Research, vol. 103, no. 11, pp. 1204–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. E. Lázár-Molnár, H. Hegyesi, S. Tóth, and A. Falus, “Autocrine and paracrine regulation by cytokines and growth factors in melanoma,” Cytokine, vol. 12, no. 6, pp. 547–554, 2000. View at Publisher · View at Google Scholar · View at Scopus
  173. B. Doyle, P. Sorajja, B. Hynes et al., “Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFβ1,” Stem Cells and Development, vol. 17, no. 5, pp. 941–951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  174. C. Urbich, A. Aicher, C. Heeschen et al., “Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 5, pp. 733–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. S. Di Santo, A. Fuchs, R. Periasamy, S. Seiler, and H. R. Widmer, “The cytoprotective effects of human endothelial progenitor cell-conditioned medium against an ischemic insult are not dependent on VEGF and IL-8,” Cell Transplantation, vol. 25, no. 4, pp. 735–747, 2016. View at Publisher · View at Google Scholar
  176. V. Muralidharan-Chari, J. W. Clancy, A. Sedgwick, and C. D'Souza-Schorey, “Microvesicles: mediators of extracellular communication during cancer progression,” Journal of Cell Science, vol. 123, no. 10, pp. 1603–1611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Gu, W. Zhang, J. Chen et al., “EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis,” PLoS ONE, vol. 9, no. 1, Article ID e85396, 2014. View at Publisher · View at Google Scholar · View at Scopus
  178. M. C. Deregibus, V. Cantaluppi, R. Calogero et al., “Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA,” Blood, vol. 110, no. 7, pp. 2440–2448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. B. R. Everaert, E. M. Van Craenenbroeck, V. Y. Hoymans et al., “Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on Pi3K/AKT/eNOS pathway,” International Journal of Cardiology, vol. 144, no. 3, pp. 350–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. D. Schmidt, C. Breymann, A. Weber et al., “Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts,” Annals of Thoracic Surgery, vol. 78, no. 6, pp. 2094–2098, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. T. Shirota, H. Yasui, H. Shimokawa, and T. Matsuda, “Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue,” Biomaterials, vol. 24, no. 13, pp. 2295–2302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  182. J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Engineering, vol. 13, no. 10, pp. 2369–2385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. T. Masuda, M. Furue, and T. Matsuda, “Photocured, styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor, insulin, and insulin-like growth factor I,” Tissue Engineering, vol. 10, no. 3-4, pp. 523–535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  184. J. A. Leopold, “Prohealing endothelial progenitor cell capture stents do the cells captured explain the clinical outcomes?” Circulation: Cardiovascular Interventions, vol. 6, no. 5, pp. 494–495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  185. V. Farooq, B. D. Gogas, and P. W. Serruys, “Restenosis: delineating the numerous causes of drug-eluting stent restenosis,” Circulation: Cardiovascular Interventions, vol. 4, no. 2, pp. 195–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. E. B. Peters, N. Christoforou, K. W. Leong, G. A. Truskey, and J. L. West, “Poly(Ethylene Glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells,” Cellular and Molecular Bioengineering, vol. 9, no. 1, pp. 38–54, 2016. View at Publisher · View at Google Scholar · View at Scopus
  187. J. Zhu, “Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering,” Biomaterials, vol. 31, no. 17, pp. 4639–4656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. J.-Z. Du, T.-M. Sun, S.-Q. Weng, X.-S. Chen, and J. Wang, “Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers,” Biomacromolecules, vol. 8, no. 11, pp. 3375–3381, 2007. View at Publisher · View at Google Scholar · View at Scopus